【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面、E的中點(diǎn),,,,.

1)求證:平面

2)求二面角的余弦值.

【答案】(1)證明見(jiàn)解析(2)

【解析】

1)取中點(diǎn)F,連結(jié),,先證四邊形為平行四邊形,進(jìn)而可得,進(jìn)而可得平面;

2)建立空間直角坐標(biāo)系,求出平面和平面的法向量,利用兩法向量所成角的余弦值可得二面角的余弦值.

1)如圖,取中點(diǎn)F,連結(jié),.

因?yàn)?/span>E中點(diǎn),,所以,.

又因?yàn)?/span>,,所以,,

所以四邊形為平行四邊形.

所以.

又因?yàn)?/span>平面,平面,

所以平面.

2)取中點(diǎn)O,連結(jié),.

因?yàn)?/span>為等邊三角形,所以.

又因?yàn)槠矫?/span>平面,平面平面,

所以平面.

因?yàn)?/span>,

所以四邊形為平行四邊形.

因?yàn)?/span>,所以.

如圖建立空間直角坐標(biāo)系,

,,.

所以,,

設(shè)平面的一個(gè)法向量為,

,則,

顯然,平面的一個(gè)法向量為,

,則,

所以.

由題知,二面角為銳角,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,是橢圓上的三點(diǎn),其中的坐標(biāo)為,過(guò)橢圓的中心,且橢圓長(zhǎng)軸的一個(gè)端點(diǎn)與短軸的兩個(gè)端點(diǎn)構(gòu)成正三角形.

1)求橢圓的方程;

2)當(dāng)直線的斜率為1時(shí),求面積;

3)設(shè)直線與橢圓交于兩點(diǎn),,且線段的中垂線過(guò)橢圓軸負(fù)半軸的交點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,是邊長(zhǎng)為的正方形.且,點(diǎn)的中點(diǎn).

1)求證:;

2)求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的周期為,圖象的一個(gè)對(duì)稱中心為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.

1)求函數(shù)的解析式;

2)求證:存在,使得,能按照某種順序成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,平面,,點(diǎn)、分別在棱、上,且,,,.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),則a的值為______,若直線經(jīng)過(guò)線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊鐵皮零件,其形狀是由邊長(zhǎng)為的正方形截去一個(gè)三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊邊上.設(shè),矩形的面積為.

1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫(xiě)出定義域;

2)試問(wèn)如何截。取何值時(shí)),可使得到的矩形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的兩焦點(diǎn)與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,右焦點(diǎn)到右頂點(diǎn)的距離為1.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)是否存在與橢圓C交于A,B兩點(diǎn)的直線l,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為.

I)求橢圓的方程和其準(zhǔn)圓方程;

(II )點(diǎn)P是橢圓C準(zhǔn)圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),且分別交其準(zhǔn)圓于點(diǎn)M,N.

1)當(dāng)P準(zhǔn)圓軸正半軸的交點(diǎn)時(shí),求的方程;

2)求證:|MN|為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案