【題目】某學(xué)校為加強(qiáng)學(xué)生的交通安全教育,對(duì)學(xué)校旁邊,兩個(gè)路口進(jìn)行了8天的檢測(cè)調(diào)查,得到每天各路口不按交通規(guī)則過馬路的學(xué)生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.
(1)求出路口8個(gè)數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;
(2)在路口的數(shù)據(jù)中任取大于35的2個(gè)數(shù)據(jù),求所抽取的兩個(gè)數(shù)據(jù)中至少有一個(gè)不小于40的概率.
【答案】(1),;(2).
【解析】
試題分析:(1)由莖葉圖可得路口個(gè)數(shù)據(jù)中為最中間兩個(gè)數(shù),由此計(jì)算中位數(shù),又路口個(gè)數(shù)據(jù)的平均數(shù)為,可得;(2)在路口的數(shù)據(jù)中任取個(gè)大于的數(shù)據(jù),有種可能,其中“至少有一次抽取的數(shù)據(jù)不小于”的情況有種,故所求概率為.
試題解析:(1)路口8個(gè)數(shù)據(jù)的中位數(shù)為.
∵路口8個(gè)數(shù)據(jù)的平均數(shù)為,
∴路口8個(gè)數(shù)據(jù)的平均數(shù)為36,
∴,.
(2)在路口的數(shù)據(jù)中任取2個(gè)大于35的數(shù)據(jù),有如下10種可能結(jié)果:
(36,37),(36,38),(36,42),(36,45),(37,38),(37,42),(37,45),
(38,42),(38,45),(42,45).
其中“至少有一次抽取的數(shù)據(jù)不小于40”的情況有如下7種:
(36,42),(36,45),(37,42),(37,45),(38,42),(38,45),(42,45).
故所求的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面,,,為中點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的對(duì)稱軸為,.
(1)求函數(shù)的最小值及取得最小值時(shí)的值;
(2)試確定的取值范圍,使至少有一個(gè)實(shí)根;
(3)當(dāng)時(shí),,對(duì)任意有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx-cos2x.
(1)求f(0)的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1) 求函數(shù)的單調(diào)遞減區(qū)間;
(2) 當(dāng)時(shí),的最小值是,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點(diǎn).
(Ⅰ)證明: ;
(Ⅱ)若為上的動(dòng)點(diǎn), 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:的左、右焦點(diǎn)分別為、,左準(zhǔn)線:和右準(zhǔn)線:分別與軸相交于、兩點(diǎn),且、恰好為線段的三等分點(diǎn).
(1)求橢圓的離心率;
(2)過點(diǎn)作直線與橢圓相交于、兩點(diǎn),且滿足,當(dāng)△的面積最大時(shí)(為坐標(biāo)原點(diǎn)),求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com