【題目】已知曲線C的極坐標(biāo)方程是ρsin2θ8cosθ0.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系xOy.在直角坐標(biāo)系中,傾斜角為α的直線l過點P(2,0)

(1)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;

(2)設(shè)點Q與點G的極坐標(biāo)分別為,(2,π),若直線l經(jīng)過點Q,且與曲線C相交于AB兩點,求△GAB的面積.

【答案】(1) y28x, (t為參數(shù))(2) .

【解析】

1)曲線C可化為ρ2sin2θ8ρcosθ0,即得其直角坐標(biāo)方程,根據(jù)已知寫出直線l的參數(shù)方程;(2)先求出直線l的參數(shù)方程為,將l的參數(shù)方程代入曲線C的直角坐標(biāo)方程得到t28t320,利用韋達(dá)定理和直線參數(shù)方程t的幾何意義求出|AB|=16, 再求點G到直線l的距離,即得△GAB的面積.

(1)曲線C可化為ρ2sin2θ8ρcosθ0,

其直角坐標(biāo)方程為y28x,直線l的參數(shù)方程為(t為參數(shù))

(2)將點的極坐標(biāo)化為直角坐標(biāo)得(0,-2),易知直線l的傾斜角α,

所以直線l的參數(shù)方程為(t為參數(shù))

l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,得,

整理得t28t320,Δ(8)24×322550

設(shè)t1,t2為方程為t28t320的兩個根,則t1t28,t1·t2=-32

所以.

由極坐標(biāo)與直角坐標(biāo)互化公式得點G的直角坐標(biāo)為(2,0),易求點G到直線l的距離,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費(fèi)和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中,

1)根據(jù)散點圖判斷,哪一個適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?給出判斷即可,不必說明理由

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)已知這種產(chǎn)品的年利潤zx、y的關(guān)系為根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費(fèi)時,年銷售量及年利潤的預(yù)報值是多少?

②年宣傳費(fèi)x為何值時,年利潤的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,與坐標(biāo)軸分別交于A,B兩點,且經(jīng)過點Q,1).

)求橢圓C的標(biāo)準(zhǔn)方程;

)若Pm,n)為橢圓C外一動點,過點P作橢圓C的兩條互相垂直的切線l1、l2,求動點P的軌跡方程,并求ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

)當(dāng)時,求的單調(diào)區(qū)間;

)若的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若滿足有四個,則的取值范圍為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為加強(qiáng)對銷售員的考核與管理,從銷售部門隨機(jī)抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.35,3.38,3.413.43,3.44,3.463.48,3.51,3.543.56,3.56,3.57,3.59,3.60,3.64,3.643.67,3.70,3.70.

(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對該銷售小組給予獎勵,否則不予獎勵.試判斷該公司是否需要對抽取的銷售小組發(fā)放獎勵;

(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請專業(yè)機(jī)構(gòu)對這5名銷售員的月均銷售額逐一進(jìn)行審核,直到能確定出造假組員為止.設(shè)審核次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,是棱的中點,,在線段上,且.

(1)證明:;

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)是橢圓的左焦點,直線:軸交于點,為橢圓的長軸,已知,且,過點作斜率為直線與橢圓相交于不同的兩點

1)當(dāng)時,線段的中點為,過軸于點,求

2)求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案