【題目】已知函數(shù)f(x)=
(1) 判別函數(shù)f(x)的奇偶性;
(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;
(3) 求關(guān)于x的不等式f(1-x2)+f(2x+2)<0的解集.
【答案】(1)奇函數(shù).(2)減函數(shù).(3)-1<x< .
【解析】試題分析:(1)先確定函數(shù)定義域:-3<x<3,再根據(jù)f(-x)與-f(x)相反關(guān)系,確定函數(shù)奇偶性(2)將分離得,根據(jù)復(fù)合函數(shù)單調(diào)性判斷函數(shù)f(x)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性定義進(jìn)行證明:先設(shè),再作差變形,最后判斷符號(3)利用函數(shù)奇偶性得f(2x+2)<f(x2-1),再根據(jù)函數(shù)單調(diào)性及定義域得-3<x2-1<2x+2<3,解得不等式解集
試題解析:解:(1) ∵ f(-x)=ln=-ln=-f(x),∴ f(x)是奇函數(shù).
(2) 由>0,得-3<x<3,∴ f(x)的定義域是(-3,3),f(x)=ln 是減函數(shù).
證明如下:
設(shè)-3<x1<x2<3,則,, 即f(x1)>f(x2),∴ f(x)是減函數(shù).
(3) 由(1)(2)知f(x)在定義域(-3,3)上是減函數(shù),∴ 不等式可化為f(2x+2)<f(x2-1),
∴ -3<x2-1<2x+2<3,解得-1<x< .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得10~1 000萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不低于1萬元,同時不超過投資收益的20%.
(1) 設(shè)獎勵方案的函數(shù)模型為f(x),試用數(shù)學(xué)語言表述公司對獎勵方案的函數(shù)模型f(x)的基本要求;
(2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎勵方案的模型函數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長為6的等腰直角三角形,俯視圖是正方形.
(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;
(Ⅱ)用多少個這樣的幾何體可以拼成一個棱長為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結(jié)論;
(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,關(guān)于的方程有三個不同的實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑.一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到,假設(shè)纜車勻速直線運(yùn)動的速度為,山路長為1260,經(jīng)測量,.
(1)求索道的長;
(2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時間不超過,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面⊥平面,⊥平面,點(diǎn)為的中點(diǎn),連接.
(1)求證:平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列方程,并回答問題:
①;②;③;④;…
(1)請你根據(jù)這列方程的特點(diǎn)寫出第個方程;
(2)直接寫出第2009個方程的根;
(3)說出這列方程的根的一個共同特點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com