【題目】如圖是一正方體的表面展開圖.、都是所在棱的中點.則在原正方體中:①異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號是______.

【答案】①②④

【解析】

將正方體的表面展開圖還原成正方體,利用正方體中線線、線面以及面面關系,以及直線與平面所成角的定義和二面角的定義進行判斷.

根據(jù)條件將正方體進行還原如下圖所示:

對于命題①,由圖形可知,直線異面,命題①正確;

對于命題②,分別為所在棱的中點,易證四邊形為平行四邊形,

所以,,平面,平面,平面,命題②正確;

對于命題③,在正方體中,平面

由于四邊形為平行四邊形,,平面.

、平面,,.

則二面角所成的角為,顯然不是直角,

則平面與平面不垂直,命題③錯誤;

對于命題④,設正方體的棱長為,易知平面,則與平面所成的角為,由勾股定理可得,

中,,即直線與平面所成線面角的正弦值為,命題④正確;

對于命題⑤,在正方體中,平面,且平面.

平面,,,

所以,二面角的平面角為,

中,由勾股定理得,,

由余弦定理得,命題⑤錯誤.

故答案為:①②④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為R,集合A={x|( x≤1},B={x|x2﹣6x+8≤0},則A∩(RB)=(
A.{x|x≤0}
B.{x|2≤x≤4}
C.{x|0≤x<2或x>4}
D.{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球隊在4次不同比賽中的得分情況如下:

甲隊

88

91

92

96

乙隊

89

93

9▓

92

乙隊記錄中有一個數(shù)字模糊(即表中陰影部分),無法確認,假設這個數(shù)字具有隨機性,并用表示.

(Ⅰ)在4次比賽中,求乙隊平均得分超過甲隊平均得分的概率;

(Ⅱ)當時,分別從甲、乙兩隊的4次比賽中各隨機選取1次,記這2個比賽得分之差的絕對值為,求隨機變量的分布列;

(Ⅲ)如果乙隊得分數(shù)據(jù)的方差不小于甲隊得分數(shù)據(jù)的方差,寫出的取值集合.(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)行的個稅法修正案規(guī)定:個稅免征額由原來的2000元提高到3500元,并給出了新的個人所得稅稅率表:

全月應納稅所得額

稅率

不超過1500元的部分

3%

超過1500元至4500元的部分

10%

超過4500元至9000元的部分

20%

超過9000元至35000元的部分

25%

……

例如某人的月工資收入為5000元,那么他應納個人所得稅為:(元).

(Ⅰ)若甲的月工資收入為6000元,求甲應納的個人收的稅;

(Ⅱ)設乙的月工資收入為元,應納個人所得稅為元,求關于的函數(shù);

(Ⅲ)若丙某月應納的個人所得稅為1000元,給出丙的月工資收入.(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面

(1)求證:

(2)若圓柱的體積,

①求三棱錐A1﹣APB的體積.

②在線段AP上是否存在一點M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面,交于點,分別為,的中點.

(Ⅰ)求證:平面平面

(Ⅱ)求證:∥平面;

(Ⅲ)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點處的切線方程為,求 的值;

(2)若, ,關于的不等式的整數(shù)解有且只有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某種書籍的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

表中.

為了預測印刷20千冊時每冊的成本費,建立了兩個回歸模型:.

(1)根據(jù)散點圖,擬認為選擇哪個模型預測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關于的回歸方程,并預測印刷20千冊時每冊的成本費.

附:對于一組數(shù)據(jù),其回歸方程中斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結果得到如下頻率分布直方圖:

(1)求直方圖中的值;

(2)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少(結果保留整數(shù));

(3)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,試計算數(shù)據(jù)落在上的概率.

(參考數(shù)據(jù):若,則,

查看答案和解析>>

同步練習冊答案