【題目】設(shè)點(diǎn)M是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱AD的中點(diǎn),點(diǎn)P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點(diǎn)P到點(diǎn)C1的最短距離是(

A.B.C.1D.

【答案】A

【解析】

過(guò)點(diǎn)的平行線交于點(diǎn)、交于點(diǎn),連接,則是平面與平面的交線,是平面與平面的交線,平行,交于點(diǎn),過(guò)點(diǎn)垂直于點(diǎn),推導(dǎo)出點(diǎn)一定是的中點(diǎn),從而點(diǎn)到點(diǎn)的最短距離是點(diǎn)到直線的距離,以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)到點(diǎn)的最短距離.

如圖,過(guò)點(diǎn)的平行線交于點(diǎn)、交于點(diǎn),連接

是平面與平面的交線,是平面與平面的交線.

平行,交于點(diǎn),過(guò)點(diǎn)垂直于點(diǎn),則有,與平面垂直,

所以,垂直,即角是平面與平面的夾角的平面角,且,

平行交于點(diǎn),過(guò)點(diǎn)垂直于點(diǎn),

同上有:,且有,又因?yàn)?/span>,故,

,故

而四邊形一定是平行四邊形,故它還是菱形,即點(diǎn)一定是的中點(diǎn),

點(diǎn)到點(diǎn)的最短距離是點(diǎn)到直線的距離,

為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,

, ,

,

點(diǎn)到點(diǎn)的最短距離:

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點(diǎn),.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長(zhǎng)為( )

A. B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的上頂點(diǎn)為,左、右焦點(diǎn)分別為,,直線的斜率為,點(diǎn),在橢圓上,其中是橢圓上一動(dòng)點(diǎn),點(diǎn)坐標(biāo)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)作直線軸垂直,交橢圓于兩點(diǎn)(,兩點(diǎn)均不與點(diǎn)重合),直線,軸分別交于點(diǎn),試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元,滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件,該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(rùn)(萬(wàn)元)表示為年促銷費(fèi)用(萬(wàn)元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品廠為了檢查甲乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:克),質(zhì)量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.表是甲流水線樣本頻數(shù)分布表,圖是乙流水線樣本頻率分布直方圖.

表甲流水線樣本頻數(shù)分布表

產(chǎn)品質(zhì)量/

頻數(shù)

490,495]

6

495,500]

8

500,505]

14

505,510]

8

510515]

4

1)若以頻率作為概率,試估計(jì)從兩條流水線分別任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少;

2)由以上統(tǒng)計(jì)數(shù)據(jù)作出2×2列聯(lián)表,并回答能否有95%的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān)

χ2

甲流水線

乙流水線

總計(jì)

合格品

不合格品

總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為的三內(nèi)角A,B,C的對(duì)邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線2xy10與直線x2y+10交于點(diǎn)P

1)求過(guò)點(diǎn)P且垂直于直線3x+4y150的直線l1的方程;(結(jié)果寫成直線方程的一般式)

2)求過(guò)點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線l2方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

同步練習(xí)冊(cè)答案