【題目】已知函數(shù)為奇函數(shù), 為常數(shù).
(1)確定的值;
(2)求證: 是上的增函數(shù);
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1) ;(2)證明見解析;(3) .
【解析】試題分析:
(1)由是奇函數(shù)可得,從而,整理得,比較系數(shù)得,驗證得不合題意,故。(2)設,做差比較可得,故,即,證得結(jié)論成立。(3)分離參數(shù)得在上恒成立,設,根據(jù)單調(diào)性求得,從而可得結(jié)論。
試題解析:
(1)∵函數(shù)是奇函數(shù),
,
即
∴,
整理得,
∴,
解得,
當時, ,不合題意舍去,
∴。
(2)由(1)可得,
設,
則,
∵,
∴
∴,
∴,
∴,即.
∴是上的增函數(shù).
(3)依題意得在上恒成立,
設, ,
由(2)知函數(shù)在上單調(diào)遞增,
∴當,
所以.
故實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】某廠商為了解用戶對其產(chǎn)品是否滿意,在使用產(chǎn)品的用戶中隨機調(diào)查了80人,結(jié)果如下表:
(1)根據(jù)上述,現(xiàn)用分層抽樣的方法抽取對產(chǎn)品滿意的用戶5人,在這5人中任選2人,求被選中的恰好是男、女用戶各1人的概率;
(2)有多大把握認為用戶對該產(chǎn)品是否滿意與用戶性別有關?請說明理由.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象過點,且與軸有唯一的交點.
(1)求的表達式;
(2)設函數(shù),若上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)設函數(shù),記此函數(shù)的最小值為,求的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:①與所成角的正切值為;②;③;④平面平面,其中正確的命題序號為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga (a>0且a≠1)是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性并說明理由;
(3)當x∈(n,a﹣2)時,函數(shù)f(x)的值域為(1,+∞),求實數(shù)n,a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】綜合題。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市在發(fā)展過程中,交通狀況逐漸受到有關部門的關注,據(jù)有關統(tǒng)計數(shù)據(jù)顯示,從上午6點到中午12點,車輛通過該市某一路段的用時y(分鐘)與車輛進入該路段的時刻t之間的關系可近似地用如下函數(shù)給出: y=
求從上午6點到中午12點,通過該路段用時最多的時刻.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com