【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.

(Ⅰ)求的普通方程;

(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線交于,兩點(diǎn),交軸于點(diǎn),求的值.

【答案】(1) (2)

【解析】

(I)設(shè)出點(diǎn)的坐標(biāo),根據(jù)兩個(gè)向量相等的坐標(biāo)表示,求得點(diǎn)的坐標(biāo),消去參數(shù)后得到的普通方程.II)方法一:先求得直線的直角坐標(biāo)方程,聯(lián)立直線的方程和的方程,求得交點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式求得的長,進(jìn)而求得的值.方法二:先求出直線的參數(shù)方程,將參數(shù)方程代入的方程,利用直線參數(shù)的幾何意義,求得的值.

(Ⅰ)設(shè),.

,消去的普通方程為.

(Ⅱ)法一:直線的極坐標(biāo)方程,即.

,,得直線的直角坐標(biāo)方程為.

,由,∴,.

,,∴.

法二:直線的極坐標(biāo)方程,即.

,,得直線的直角坐標(biāo)方程為.

.∵直線的傾斜角為,

∴可得直線的參數(shù)方程為為參數(shù)).

代入,得,設(shè)此方程的兩個(gè)根為,,則.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù),為常數(shù),且是函數(shù)的一個(gè)極值點(diǎn).

)求的值;

)若函數(shù),,求的單調(diào)區(qū)間;

) 過點(diǎn)可作曲線的三條切線,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測(cè)量中的應(yīng)用,英國天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(當(dāng)較小時(shí), )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)圓錐形量杯的高為厘米,其母線與軸的夾角為

(1)求該量杯的側(cè)面積;

(2)若要在該圓錐形量杯的一條母線上,刻上刻度,表示液面到達(dá)這個(gè)刻度時(shí),量杯里的液體的體積是多少.當(dāng)液體體積是立方厘米時(shí),刻度的位置與頂點(diǎn)之間的距離是多少厘米(精確到厘米)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意給定的無理數(shù)及實(shí)數(shù),圓周上的有理點(diǎn)的個(gè)數(shù)情況是()

A. 至多一個(gè) B. 至多兩個(gè) C. 至少兩個(gè),個(gè)數(shù)有限 D. 無數(shù)多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正四面體PQMN的頂點(diǎn)分別在給定的四面體ABCD的面上,每個(gè)面上恰有一個(gè)點(diǎn),那么,( ).

A. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無數(shù)個(gè),否則,正四面體PQMN只有一個(gè)

B. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無數(shù)個(gè),否則,正四面體PQMN不存在

C. 當(dāng)四面體ABCD的三組對(duì)棱分別相等時(shí),正四面體PQMN有無數(shù)個(gè),否則,正四面體PQMN只有一個(gè)

D. 對(duì)任何四面體ABCD,正四面體PQMN都有無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+cx+dx=1處取極小值,x=3處取極大值,且函數(shù)圖象在(2,f(2))處的切線與直線x-5y=0平行.

1)求實(shí)數(shù)abc的值;

2)設(shè)函數(shù)f(x)=0有三個(gè)不相等的實(shí)數(shù)根,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場(chǎng)占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下簡(jiǎn)稱外賣甲,外賣乙)的經(jīng)營情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:

1日

2日

3日

4日

5日

外賣甲日接單(百單)

5

2

9

8

11

外賣乙日接單(百單)

2.2

2.3

10

5

15

(1)據(jù)統(tǒng)計(jì)表明,之間具有線性相關(guān)關(guān)系.

(。┱(qǐng)用相關(guān)系數(shù)加以說明:(若,則可認(rèn)為有較強(qiáng)的線性相關(guān)關(guān)系(值精確到0.001))

(ⅱ)經(jīng)計(jì)算求得之間的回歸方程為.假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測(cè)當(dāng)外賣乙日接單量不低于2500單時(shí),外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)

(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.

相關(guān)公式:相關(guān)系數(shù),

參考數(shù)據(jù):

.

查看答案和解析>>

同步練習(xí)冊(cè)答案