已知定義域為[0,1]的函數(shù)f (x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f (x)的最大值;
(3)試證明:當x∈(
1
4
1
2
]
時,f(x)<2x.
分析:(1)令x1=x2=0,依條件③可得f(0)≤0,又由條件(1)得f(0)≥0,利用夾逼法則可求出f(0)的值;
(2)任取0≤x1<x2≤1,然后根據(jù)f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)≥f(x1),可得函數(shù)的單調(diào)性,從而求出函數(shù)的最大值;
(3)當x∈(
1
2
,1]
時,可得f(x)≤f(1)=1,當x∈(
1
4
,
1
2
]
時,則
1
2
<2x≤1,根據(jù)③可證得結(jié)論.
解答:解:(1)令x1=x2=0,依條件③可得f(0+0)≥2f(0),即f(0)≤0
又由條件(1)得f(0)≥0 故f(0)=0(4分)
(2)任取0≤x1<x2≤1可知x2-x1∈(0,1],則
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)≥f(x1
于是當0≤x≤1時,有f(x)≤f(1)=1因此當x=1時,f(x)取最大值1.(9分)
(3)證明:當x∈(
1
2
,1]
時,f(x)≤f(1)=1
當x∈(
1
4
1
2
]
時,
1
2
<2x≤1,f(2x)≤1,f(2x)≥f(x)+f(x)=2f(x)
∴f(x)≤
1
2
f(2x)≤
1
2
<2x   即f(x)<2x.(14分)
點評:本題主要考查了函數(shù)的最值,以及恒成立問題,同時考查了賦值法的應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f(x)同時滿足以下三個條件:
①對任意的x∈[0,1],總有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
請解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f (x1+x2)≥f (x1)+f (x2).
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當x∈(
1
2n
,
1
2n-1
]
,n∈N+時,f(x)<2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)同時滿足以下三個條件:①對任意x∈[0,1],總有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否同時適合①②③?并予以證明;
(3)假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

同步練習冊答案