【題目】對n個不同的實數(shù)a1,a2,…,an可得n!個不同的排列,每個排列為一行寫成一個n!行的數(shù)陣.對第i行ai1,ai2,…,ain,記bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3…,n!.例如用1,2,3可得數(shù)陣如圖,對于此數(shù)陣中每一列各數(shù)之和都是12,所以bl+b2+…b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…b120等于( )
A.-3600B.-1800C.-1080D.-720
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是無窮數(shù)列.給出兩個性質(zhì):
①對于中任意兩項,在中都存在一項,使;
②對于中任意項,在中都存在兩項.使得.
(Ⅰ)若,判斷數(shù)列是否滿足性質(zhì)①,說明理由;
(Ⅱ)若,判斷數(shù)列是否同時滿足性質(zhì)①和性質(zhì)②,說明理由;
(Ⅲ)若是遞增數(shù)列,且同時滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,問立夏日影長為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,P為線段上的動點,下列說法正確的是( )
A.對任意點P,平面
B.三棱錐的體積為
C.線段DP長度的最小值為
D.存在點P,使得DP與平面所成角的大小為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Keep是一款具有社交屬性的健身APP,致力于提供健身教學(xué)、跑步、騎行、交友及健身飲食指導(dǎo)、裝備購買等一站式運動解決方案.Keep可以讓你隨時隨地進行鍛煉,記錄你每天的訓(xùn)練進程.不僅如此,它還可以根據(jù)不同人的體質(zhì),制定不同的健身計劃.小明根據(jù)Keep記錄的2019年1月至2019年11月期間每月跑步的里程(單位:十公里)數(shù)據(jù)整理并繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A.月跑步里程最小值出現(xiàn)在2月
B.月跑步里程逐月增加
C.月跑步里程的中位數(shù)為5月份對應(yīng)的里程數(shù)
D.1月至5月的月跑步里程相對于6月至11月波動性更小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的角A,B,C的對邊分別為a,b,c,已知.
(1)求角A;
(2)從三個條件:①;②;③的面積為中任選一個作為已知條件,求周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,、分別為橢圓長軸的左、右端點,為直線上異于點的任意一點,連接交橢圓于點.
(1)若,求直線的方程;
(2)是否存在軸上的定點使得以為直徑的圓恒過與的交點?如果存在,請求出定點的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為,曲線C1和C2在第一象限交于點A.
(1)求點A的直角坐標(biāo);
(2)直線與曲線C1,C2在第一象限分別交于點B,C,若△ABC的面積為,求α的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com