【題目】0,123,4,5,67,8,9組成沒有重復數(shù)字的五位數(shù),且是奇數(shù),其中恰有兩個數(shù)字是偶數(shù),則這樣的五位數(shù)的個數(shù)為( ).

A.7200B.6480C.4320D.5040

【答案】B

【解析】

以偶數(shù)數(shù)字取不取0,分兩類討論,每類用先取后排的策略即可

第一類,偶數(shù)數(shù)字取0

先從1,3,5,7,9中取3個奇數(shù),從2,46,8中取1個偶數(shù),

中取法,然后將個位數(shù)排一個奇數(shù),十位、百位、千位

選一個出來排0,剩下3個數(shù)字全排列,即有種排法

所以本類滿足條件的五位數(shù)有

第二類,偶數(shù)數(shù)字不取0

先從1,3,57,9中取3個奇數(shù),從24,68中取2個偶數(shù),

中取法,然后將個位數(shù)排一個奇數(shù),剩下4個數(shù)字全排列,

即有種排法

所以本類滿足條件的五位數(shù)有

綜上:這樣的五位數(shù)個數(shù)為

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)有(

1)在空間直角坐標系中,點關(guān)于平面的對稱點為,則點關(guān)于原點的對稱點的坐標為.

2.

319084187的最大公約數(shù)是53.

4)用秦九韶算法計算多項式,當時的值.

5)古代五行學說認為:物質(zhì)分金,木,土,水,火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,設(shè)事件A表示排列中屬性相克的兩種物質(zhì)不相鄰,則事件A的概率為.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,曲線C的參數(shù)方程是,(為參數(shù)).

(1)求直線被曲線C截得的弦長;

(2)從極點作曲線C的弦,求各弦中點軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《基礎(chǔ)教育課程改革綱要(試行)》將“具有良好的心理素質(zhì)”列入新課程的培養(yǎng)目標.為加強心理健康教育工作的開展,不斷提高學生的心理素質(zhì),九江市某校高二年級開設(shè)了《心理健康》選修課,學分為2.學校根據(jù)學生平時上課表現(xiàn)給出“合格”與“不合格”兩種評價,獲得“合格”評價的學生給予50分的平時分,獲得“不合格”評價的學生給予30分的平時分,另外還將進行一次測驗.學生將以“平時分×40%+測驗分×80%”作為“最終得分”,“最終得分”不少于60分者獲得學分.

該校高二(1)班選修《心理健康》課的學生的平時份及測驗分結(jié)果如下:

測驗分

[3040

[40,50

[5060

[60,70

[70,80

[8090

[90,100]

平時分50分人數(shù)

0

3

4

4

2

平時分30分人數(shù)

1

0

0

1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認為這些學生“測驗分是否達到60分”與“平時分”有關(guān)聯(lián)?

選修人數(shù)

測驗分

達到60

測驗分

未達到60

合計

平時分50

平時分30

合計

2)若從這些學生中隨機抽取1人,求該生獲得學分的概率.

附:,其中

0.1

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當a時,試判斷函數(shù)f(x)的單調(diào)性;

2)設(shè)g(x),若g(x)有唯一零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即終止.若摸出白球,則記2分,若摸出黑球,則記1分.每個球在每一次被取出的機會是等可能的.

(1)求袋中白球的個數(shù);

(2)用表示甲,乙最終得分差的絕對值,求隨機變量的概率分布列及數(shù)學期望E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市調(diào)查機構(gòu)在某設(shè)置過街天橋的路口隨機調(diào)查了110人準備過馬路的交通參與者對跨越護欄和走過街天橋的看法,得到如下列聯(lián)表:

合計

走過街天橋

40

20

60

跨越護欄

20

30

50

合計

60

50

110

附:.

0.050

0.010

0.001

K

3.841

6.635

10.828

則可以得到正確的結(jié)論是( )

A.有99%以上的把握認為“選擇過馬路的方式與性別有關(guān)”

B.有99%以上的把握認為“選擇過馬路的方式與性別無關(guān)”

C.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別有關(guān)”

D.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為積極響應(yīng)國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議,為調(diào)查該校學生每周平均體育運動時間的情況,從高一高二(非畢業(yè)年級)與高三(畢業(yè)年級)共三個年級學生中按照的比例分層抽樣,收集位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖.(已知高一年級共有名學生)

1)據(jù)圖估計該校學生每周平均體育運動時間,并估計高一年級每周平均體育運動時間不足小時的人數(shù);

2)規(guī)定每周平均體育運動時間不少于小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有位高三學生的每周平均體育運動時間不少于小時,請完成下列列聯(lián)表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間是否優(yōu)秀與畢業(yè)年級有關(guān)”?

非畢業(yè)年級

畢業(yè)年級

合計

優(yōu)秀

非優(yōu)秀

合計

附:.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

)求橢圓和雙曲線的標準方程;

)設(shè)直線、的斜率分別為,證明

)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案