精英家教網 > 高中數學 > 題目詳情
為正方形的中心,四邊形是平行四邊形,且平面平面,若.

(1)求證:平面.
(2)線段上是否存在一點,使平面?若存在,求的值;若不存在,請說明理由.
(1)要證明線面垂直,則可以根據線線垂直,結合判定定理來得到。(2)的值為1

試題分析:解:(1)在正方形中,.
,∴.
,∴平行四邊形為菱形,∴.
又∵平面平面,∴平面,∴,
,∴平面.
(2)存在線段的中點,使平面.
是線段的中點,中點,∴.
平面,平面,∴平面,
此時的值為1.     
點評:主要是考查了線面的位置關系的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,已知空間四邊形中,,的中點.

(Ⅰ)求證:平面CDE;
(Ⅱ)若G為的重心,試在線段AE上確定一點F,使得GF//平面CDE.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點,M是線段上的動點。

(1)當M在什么位置時,,請給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知的二面角,點A,,C為垂足,,BD,D為垂足,若AC=BD=DC=1則AB與面所成角的正弦值為__________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

一個多面體的直觀圖和三視圖如圖所示,其中,分別是,的中點.
(1)求證:平面;
(2)在線段上(含端點)確定一點,使得∥平面,并給出證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,二面角的棱上有C、D兩點,線段AC、BD分別在這個二面角的兩個半平面內,且都垂直于CD,已知AC=2,BD=3, AB=6,CD=,則這個二面角的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現將AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當ED運動到C,則K所形成軌跡的長度為   (   )
         
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖1,在Rt中, D、E分別是上的點,且.將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面;
(Ⅱ)若,求與平面所成角的正弦值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中,底面,的中點.

(Ⅰ)求證://平面;
(Ⅱ)若平面,求平面與平面夾角的余弦值.

查看答案和解析>>

同步練習冊答案