【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

【答案】
(1)解:利用cos2φ+sin2φ=1,把圓C的參數(shù)方程 (φ為參數(shù))化為(x﹣1)2+y2=1,

∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.


(2)解:設(shè)(ρ1,θ1)為點(diǎn)P的極坐標(biāo),由 ,解得

設(shè)(ρ2,θ2)為點(diǎn)Q的極坐標(biāo),由 ,解得

∵θ12,∴|PQ|=|ρ1﹣ρ2|=2.

∴|PQ|=2.


【解析】解:(I)利用cos2φ+sin2φ=1,即可把圓C的參數(shù)方程化為直角坐標(biāo)方程.(II)設(shè)(ρ1 , θ1)為點(diǎn)P的極坐標(biāo),由 ,聯(lián)立即可解得.設(shè)(ρ2 , θ2)為點(diǎn)Q的極坐標(biāo),同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S3 , S9 , S6成等差數(shù)列. (Ⅰ)求證:a2 , a8 , a5成等差數(shù)列;
(Ⅱ)若等差數(shù)列{bn}滿足b1=a2=1,b3=a5 , 求數(shù)列{an3bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)結(jié)論: ①函數(shù) 的對(duì)稱中心是(﹣1,2);
②若關(guān)于x的方程 沒有實(shí)數(shù)根,則k的取值范圍是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的充分不必要條件;
④若 的圖象向右平移φ(φ>0)個(gè)單位后為奇函數(shù),則φ最小值是
其中正確的結(jié)論是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓E:x2+(y﹣ 2= 經(jīng)過橢圓C: + =1(a>b>0)的左右焦點(diǎn)F1 , F2 , 且與橢圓C在第一象限的交點(diǎn)為A,且F1 , E,A三點(diǎn)共線,直線l交橢圓C于M,N兩點(diǎn),且 (λ≠0)
(1)求橢圓C的方程;
(2)當(dāng)三角形AMN的面積取得最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為銳角△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大。
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1 =1,雙曲線C2 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , M 是雙曲線C2 一條漸近線上的點(diǎn),且OM⊥MF2 , 若△OMF2的面積為 16,且雙曲線C1 , C2的離心率相同,則雙曲線C2的實(shí)軸長(zhǎng)為(
A.4
B.8
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)f(x)=ax2﹣2x+lnx(a≠0,a∈R).
(1)判斷函數(shù) f (x)的單調(diào)性;
(2)若函數(shù) f (x)有兩個(gè)極值點(diǎn)x1 , x2 , 求證:f(x1)+f(x2)<﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC 的內(nèi)角 A,B,C 的對(duì)邊分別是a,b,c,且 a= b cosC+c sinB. (Ⅰ)求角B 的大小;
(Ⅱ)若點(diǎn)M 為BC的中點(diǎn),且 AM=AC,求sin∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案