如圖,橢圓C: 的焦點(diǎn)為F1(0,c)、F2(0,一c)(c>0),拋物線的焦點(diǎn)與F1重合,過F2的直線l與拋物線P相切,切點(diǎn)在第一象限,且與橢圓C相交于A、B兩點(diǎn),且
(I)求證:切線l的斜率為定值;
(Ⅱ)若拋物線P與直線l及y軸圍成的圖形面積為,求拋物線P的方程;
(III)當(dāng)時,求橢圓離心率e的取值范圍。


 
 

 
(Ⅰ)   (Ⅱ) (III)
 (I)依題意拋物線
設(shè)直線l與拋物線P的切點(diǎn)為,又切點(diǎn)在第一象限,


所以切線l的斜率為定值。 ………………4分
(II)由(I)可得:

以拋物線P的方程為: ………………8分
(III)由,

設(shè)

上單調(diào)遞增,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)橢圓的左右焦點(diǎn)分別為,離心率,右準(zhǔn)線為上的兩個動點(diǎn),。
(Ⅰ)若,求的值;
(Ⅱ)證明:當(dāng)取最小值時,共線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中,,。若以為焦點(diǎn)的橢圓經(jīng)過點(diǎn),則該橢圓的離心率          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)F是橢圓在y軸正半軸上的一個焦點(diǎn),點(diǎn)A,B是拋物線上的兩個動點(diǎn),且滿足,過點(diǎn)A,B分別作拋物線的兩條切線,設(shè)兩切線的交點(diǎn)為M,試推斷是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,A是橢圓C上的一點(diǎn),且,坐標(biāo)原點(diǎn)O到直線的距離為
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過Q的直線lx軸于點(diǎn),較y軸于點(diǎn)M,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知長方形ABCD, AB=2, BC="1." 以AB的中點(diǎn)為原點(diǎn)建立如圖8所示的平面直角坐標(biāo)系.
(Ⅰ)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(0,2)的直線交(Ⅰ)中橢圓于M,N兩點(diǎn),是否存在直線,使得以弦MN為直徑的圓恰好過原點(diǎn)?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)(x,y)是橢圓=1(a>b>0)在x軸上方的點(diǎn),則w=x+y的最大值為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓與軸的負(fù)半軸交于點(diǎn),與軸的正半軸交于點(diǎn),是左焦點(diǎn)且到直線的距離,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)的最小值是(   )
A.B.C.-3D.

查看答案和解析>>

同步練習(xí)冊答案