【題目】已知過點(diǎn)A(0,2)的直線與橢圓C:交于P,Q兩點(diǎn).

(1)若直線的斜率為k,求k的取值范圍;

(2)若以PQ為直徑的圓經(jīng)過點(diǎn)E(1,0),求直線的方程.

【答案】1;(2.

【解析】

試題(1)由題意設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,化為關(guān)于的一元二次方程后由判別式大于求得的取值范圍;(2)設(shè)出的坐標(biāo),利用根與系數(shù)的關(guān)系得到的橫坐標(biāo)的和與積,結(jié)合以為直徑的圓經(jīng)過點(diǎn),由求得值,則直線方程可求.

試題解析:(1)依題意,直線的方程為,由,消去,,解得,所以的取值范圍是.

2)當(dāng)直線的斜率不存在時(shí),直線的方程為,,此時(shí)以為直徑的圓過點(diǎn),滿足題意.直線的斜率存在時(shí),設(shè)直線的方程為 ,,所以.由(1)知,,所以

.

因?yàn)橐?/span>直徑的圓過點(diǎn),所以,即,解得,滿足.

故直線的方程為.綜上,所求直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點(diǎn),過點(diǎn) 的直線分別與圓交于,兩點(diǎn).

1,,求的面積;

(2)過點(diǎn)作圓O的兩條切線,切點(diǎn)分別為E,F(xiàn),求;

3,求證直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,EPC的中點(diǎn).

.求證:(PA∥平面BDE;()平面PAC⊥平面BDE;(III)PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓O的直徑,C在圓O上,CF⊥AB于F,點(diǎn)D為線段CF上任意一點(diǎn),延長(zhǎng)AD交圓O于E,∠AEC=30°.
(1)求證:AF=FO;
(2)若CF= ,求ADAE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在上的一點(diǎn)的正北方向的處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無頂中轉(zhuǎn)站(其中上),現(xiàn)從倉(cāng)庫(kù)和中轉(zhuǎn)站分別修兩條道路,已知,且

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬元,兩條道路造價(jià)為30萬元,問:取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“紅燈停,綠燈行”,這是我們每個(gè)人都應(yīng)該也必須遵守的交通規(guī)則.湊齊一撥人就過馬路﹣﹣不看交通信號(hào)燈、隨意穿行交叉路口的“中國(guó)式過馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國(guó)式過馬路”是衡量這座城市文明程度的重要指標(biāo).某調(diào)查機(jī)構(gòu)為了了解路人對(duì)“中國(guó)式過馬路”的態(tài)度,從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

男性

女性

合計(jì)

反感

10

不反感

8

合計(jì)

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過馬路”的路人的概率是

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認(rèn)為反感“中國(guó)式過馬路”與性別有關(guān)?

(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一項(xiàng)活動(dòng),記反感“中國(guó)式過馬路”的人數(shù)為X,求X的分布列及其數(shù)學(xué)期望.

附:,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案