【題目】已知:向量 =( ,0),O為坐標原點,動點M滿足:| + |+| ﹣ |=4.
(1)求動點M的軌跡C的方程;
(2)已知直線l1 , l2都過點B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.
【答案】
(1)解:由:| + |+| ﹣ |=4, =( ,0),
知動點M的軌跡是以點( ,0)為焦點、4為長軸長的橢圓,
∴c= ,a=2,
∴b=1,
∴所求的方程為 =1
(2)解:設BD:y=kx+1,代入上式得(1+4k2)x2+8kx=0,
∴x1=0,x2=﹣ =xD,
∵l1⊥l2,∴以﹣ 代k,得xE=
∵△BDE是等腰直角三角形,
∴|BD|=|BE|,
∴ = ,
∴|k|(k2+4)=1+4k2,①
k>0時①變?yōu)閗3﹣4k2+4k﹣1=0,∴k=1或 ;
k<0時①變?yōu)閗3+4k2+4k﹣1=0,k=﹣1或 .
∴使得△BDE是等腰直角三角形的直線共有3組.
【解析】(1)由:| + |+| ﹣ |=4, =( ,0),知動點M的軌跡是以點( ,0)為焦點、4為長軸長的橢圓,即可求動點M的軌跡C的方程;(2)設直線方程,求出D,E的坐標,利用△BDE是等腰直角三角形,可得|BD|=|BE|,即 = ,從而可得結論.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|2x+1|.
(Ⅰ)若不等式f(x)≥a2﹣2a﹣1恒成立,求實數(shù)a的取值范圍;
(Ⅱ)設m>0,n>0且m+n=1,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,平面ABC⊥平面BCD,△BAC與BCD均為等于直角三角形,且∠BAC=∠BCD=90°,BC=2,點P是線段AB上的動點,若線段CD上存在點Q,使得異面直線PQ與AC成30°的角,則線段PA長的取值范圍是( )
A.(0, )
B.[0, ]
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)求證:在(Ⅰ)的條件下,f(x)>g(x)+ ;
(Ⅲ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知P是函數(shù)f(x)=ex(x>0)的圖象上的動點,該圖象在點P處的切線l交y軸于點M,過點P作l的垂線交y軸于點N,設線段MN的中點的縱坐標為t,則t的最大值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n都有an= Sn+2成立.若bn=log2an , 則b1008=( )
A.2017
B.2016
C.2015
D.2014
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內任取兩個實數(shù)p,q,且p≠q,不等式 >1恒成立,則實數(shù)a的取值范圍為( )
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com