【題目】在平面直角坐標(biāo)系中,已知函數(shù)的圖像與直線相切,其中是自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)設(shè)函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn).
①求實(shí)數(shù)的取值范圍;
②設(shè)函數(shù)的極大值和極小值的差為,求實(shí)數(shù)的取值范圍 .
【答案】(1)2;(2)①;(2).
【解析】分析:(1)直接利用導(dǎo)數(shù)的幾何意義即可求得c值(2) 函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn),則在區(qū)間內(nèi)有兩個(gè)不同跟即可;的極大值和極小值的差為進(jìn)行化簡分析;
詳解:(1)設(shè)直線與函數(shù)相切于點(diǎn),
函數(shù)在點(diǎn)處的切線方程為: ,,
把代入上式得.
所以,實(shí)數(shù)的值為.
(2)①由(1)知,
設(shè)函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn),
令 ,
則,設(shè),
因?yàn)?/span>,故只需,所以, .
②因?yàn)?/span>,所以,
由,得,且.
.
設(shè),,令,
,
(在上單調(diào)遞減,從而,
所以,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣經(jīng)濟(jì)最近十年穩(wěn)定發(fā)展,經(jīng)濟(jì)總量逐年上升,下表是給出的部分統(tǒng)計(jì)數(shù)據(jù):
序號(hào) | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
經(jīng)濟(jì)總量(億元) | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,記序號(hào)為,請(qǐng)直接寫出與的關(guān)系式;
(2)利用所給數(shù)據(jù)求經(jīng)濟(jì)總量與年份之間的回歸直線方程;
(3)利用(2)中所求出的直線方程預(yù)測該縣2018年的經(jīng)濟(jì)總量.
附:對(duì)于一組數(shù)據(jù),
其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)與的面積之和記為.
若,求的值;
若對(duì)任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個(gè)頂點(diǎn)為, 為的中點(diǎn).求:
(1) 所在直線的方程;
(2) 邊上中線所在直線的方程;
(3) 邊上的垂直平分線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(1+a2)x2 , 其中a>0,區(qū)間I={x|f(x)>0}
(1)求I的長度(注:區(qū)間(a,β)的長度定義為β﹣α);
(2)給定常數(shù)k∈(0,1),當(dāng)1﹣k≤a≤1+k時(shí),求I長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)過曲線上任意一點(diǎn)處的切線為,總存在過曲線上一點(diǎn)處的切線,使得,則實(shí)數(shù)的取值范圍為_____________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為1.80元,當(dāng)用水超過4噸時(shí),超過部分每噸3.00元,某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費(fèi)26.4元,分別求出甲、乙兩戶該月的用水量和水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當(dāng)0≤x≤1時(shí),
(i)函數(shù)f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對(duì)x∈[0,1]恒成立,求a+b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com