【題目】已知定義域?yàn)?/span>的奇函數(shù)的導(dǎo)函數(shù)為,當(dāng)時(shí),,若,,,則,的大小關(guān)系正確的是(   )

A. B. C. D.

【答案】C

【解析】

根據(jù)式子得出F(x)=xf(x)為R上的偶函數(shù),利用f′(x)+0.

當(dāng)x0時(shí),xf′(x)+f(x)0,

當(dāng)x0時(shí),xf′(x)+f(x)0,判斷單調(diào)性即可證明a,b,c 的大。

定義域?yàn)?/span>R的奇函數(shù)y=f(x),

設(shè)F(x)=xf(x),

F(x)為R上的偶函數(shù),

F′(x)=f(x)+xf′(x)

∵當(dāng)x0時(shí),f′(x)+0.

∴當(dāng)x0時(shí),xf′(x)+f(x)0,

當(dāng)x0時(shí),xf′(x)+f(x)0,

F(x)在(0,+∞)單調(diào)遞增,在(﹣∞,0)單調(diào)遞減.

F()=a=f()=F(ln),F(xiàn)(﹣3)=b=﹣3f(﹣3)=F(3),F(xiàn)(ln)=c=(ln)f(ln)=F(ln3),

lnln33,

F(lnF(ln3)F(3).

acb,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),為偶函數(shù),且(e是自然對(duì)數(shù)的底數(shù)).

1)分別求出的解析式;

2)記,請(qǐng)判斷的奇偶性和單調(diào)性,并分別說(shuō)明理由;

3)若存在,使得不等式能成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)DD在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)上的奇函數(shù),當(dāng)時(shí),.

1)求的解析式并畫(huà)出函數(shù)的圖像;

2)求的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了解本市萬(wàn)名學(xué)生的漢字書(shū)寫(xiě)水平,在全市范圍內(nèi)進(jìn)行了漢字聽(tīng)寫(xiě)考試,發(fā)現(xiàn)其成績(jī)服從正態(tài)分布,現(xiàn)從某校隨機(jī)抽取了名學(xué)生,將所得成績(jī)整理后,繪制出如圖所示的頻率分布直方圖.

1)估算該校名學(xué)生成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)求這名學(xué)生成績(jī)?cè)?/span>內(nèi)的人數(shù);

3)現(xiàn)從該校名考生成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人,該兩人成績(jī)排名(從高到低)在全市前名的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的圖像在點(diǎn)處的切線方程;

(2)求在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·衢州調(diào)研)已知四棱錐PABCD的底面ABCD是菱形,∠ADC120°AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,NPC的中點(diǎn).

(1)求證:平面MPB⊥平面PBC

(2)MPMC,求直線BN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,⊥平面的中點(diǎn).

(Ⅰ)證明:∥平面;

(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案