【題目】已知向量,,角,,為的內(nèi)角,其所對(duì)的邊分別為,,.
(1)當(dāng)取得最大值時(shí),求角的大小;
(2)在(1)成立的條件下,當(dāng)時(shí),求的取值范圍.
【答案】(1)(2)
【解析】分析:(1)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算列出關(guān)系式,利用誘導(dǎo)公式及二倍角的余弦函數(shù)公式化簡,整理后得到關(guān)于的二次函數(shù),由的范圍求出的范圍,利用正弦函數(shù)的圖象與性質(zhì)得出此時(shí)的范圍,利用二次函數(shù)的性質(zhì)即可求出取得最大值時(shí)的度數(shù);
(2)由及的值,利用正弦定理表示出,再利用三角形的內(nèi)角和定理用表示出,將表示出的代入中,利用二倍角的余弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)求出此時(shí)正弦函數(shù)的值域,即可確定出的取值范圍.
詳解:
(1)
,令,,
原式,當(dāng),即,時(shí),取得最大值.
(2)當(dāng)時(shí),,.由正弦定理得:(為的外接圓半徑)
于是
.
由,得,于是
,,
所以的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底, 是的中點(diǎn)。
(1)證明:直線平面;
(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用春節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖。
(一)人數(shù)統(tǒng)計(jì)表: (二)各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)在答題卡給定的坐標(biāo)系中補(bǔ)全頻率分布直方圖,并求出、、的值;
(Ⅱ)從歲年齡段的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗(yàn)活動(dòng)。若將這個(gè)人通過抽簽分成甲、乙兩組,每組的人數(shù)相同,求歲中被抽取的人恰好又分在同一組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知產(chǎn)品的質(zhì)量采用綜合指標(biāo)值進(jìn)行衡量,為一等品;為二等品;為三等品.我市一家工廠準(zhǔn)備購進(jìn)新型設(shè)備以提高生產(chǎn)產(chǎn)品的效益,在某供應(yīng)商提供的設(shè)備中任選一個(gè)試用,生產(chǎn)了一批產(chǎn)品并統(tǒng)計(jì)相關(guān)數(shù)據(jù),得到頻率分布直方圖:
(1)估計(jì)該新型設(shè)備生產(chǎn)的產(chǎn)品為二等品的概率;
(2)根據(jù)這家工廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對(duì)應(yīng)產(chǎn)量的比值)及單件售價(jià)情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價(jià) | 元 | 元 | 元 |
根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價(jià)的全部處理完.已知該工廠認(rèn)購該新型設(shè)備的前提條件是,該新型設(shè)備生產(chǎn)的產(chǎn)品同時(shí)滿足下列兩個(gè)條件:
①綜合指標(biāo)值的平均數(shù)不小于(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
②單件平均利潤值不低于.
若該新型設(shè)備生產(chǎn)的產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型設(shè)備是否達(dá)到該工廠的認(rèn)購條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線過點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是出租汽車計(jì)價(jià)器的程序框圖,其中表示乘車?yán)锍?單位:),表示應(yīng)支付的出租汽車費(fèi)用(單位:元).有下列表述:
①在里程不超過的情況下,出租車費(fèi)為8元;
②若乘車,需支付出租車費(fèi)20元;
③乘車的出租車費(fèi)為
④乘車與出租車費(fèi)的關(guān)系如圖所示:
則正確表述的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實(shí)數(shù)x,使 ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到函數(shù) 的圖象;
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(﹣x),當(dāng)0≤x≤1時(shí),f(x)=2x,
則f(2015)=﹣2.
其中正確命題是(寫出所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)的極值;
(2)當(dāng)0<x<e時(shí),求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)與關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線垂直于軸,垂足為,與拋物線交于不同的兩點(diǎn), ,且.
(1)求點(diǎn)的橫坐標(biāo).
(2)若以, 為焦點(diǎn)的橢圓過點(diǎn)
(。┣髾E圓的標(biāo)準(zhǔn)方程;
(ⅱ)過點(diǎn)作直線與橢圓交于, 兩點(diǎn),設(shè),若,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com