(13分)如圖,正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,
是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°
(1)求證:EF⊥平面BCE;
(2)設(shè)線段CD的中點(diǎn)為P,在直線AE上是否存在一點(diǎn)M,使得PM//平面BCE?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
六棱臺(tái)的上、下底面均是正六邊形,邊長(zhǎng)分別是8 cm和18 cm,側(cè)面是全等的等腰梯形,側(cè)棱長(zhǎng)為13 cm,求它的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知平面,平面,△為等邊三角形,邊長(zhǎng)為2a,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題満分12分)
如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(Ⅰ)證明AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明面AED⊥面A1FD1;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)平面EFGH分別平行空間四邊形ABCD中的CD與AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求證EFGH為矩形;
(2)點(diǎn)E在什么位置,SEFGH最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
三棱錐中,兩兩垂直且相等,點(diǎn)分別是線段和上移動(dòng),且滿足,,則和所成角余弦值的取值范圍是( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com