【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設(shè)甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)

1)求的值;

2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?

【答案】(1;(2)甲大棚萬元,乙大棚萬元時,總收益最大, 且最大收益為萬元.

【解析】試題分析:(1)由題意,把代入所給函數(shù)求出即可;(2)每年兩個大棚的總收益為,確定函數(shù)的定義域,利用二次函數(shù)圖象在閉區(qū)間上求最值即可.

試題解析:(1)因?yàn)榧状笈锿度?/span>萬元,則乙大棚投入萬元,....................1

所以......................4

2,

依題意得,故......8

,

當(dāng),即時, ,

所以投入甲大棚萬元,乙大棚萬元時,總收益最大,且最大收益為萬元...........12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙二人用4張撲克牌分別是紅桃2,紅桃3,紅桃4,方片4完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.

1設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況;

2若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?

3甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認(rèn)為此游戲是否公平,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對的邊分別為,且

(1)求角的大;

(2)若,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個小組的頻率分別時0.1,0.3,0.4,第一小組的頻數(shù)為5.

(1)求第四小組的頻率?

(2)問參加這次測試的學(xué)生人數(shù)是多少?

(3)問在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

I)設(shè)相交于兩點(diǎn),求;

II)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線.設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,已知,點(diǎn)在底面的投影是線段的中點(diǎn)

(1)證明:在側(cè)棱上存在一點(diǎn),使得平面,并求出的長;

(2)求:平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用兩種原料,已知每種產(chǎn)品各生產(chǎn)噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)噸甲產(chǎn)品可獲利潤3萬元,生產(chǎn)噸乙產(chǎn)品可獲利萬元,則該企業(yè)每天可獲得最大利潤為___________萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于空間直角坐標(biāo)系中的一點(diǎn),有下列說法:

①點(diǎn)到坐標(biāo)原點(diǎn)的距離為

的中點(diǎn)坐標(biāo)為;

③點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為;

④點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)的坐標(biāo)為

⑤點(diǎn)關(guān)于坐標(biāo)平面對稱的點(diǎn)的坐標(biāo)為.

其中正確的個數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為矩形,底面,上一點(diǎn),且平面.

(1)求的長度;

(2)求與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案