【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左頂點(diǎn)為,離心率為,過點(diǎn)的直線與橢圓交于另一點(diǎn),點(diǎn)為軸上的一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,求直線的方程.
【答案】(1)(2)
【解析】
試題(1)根據(jù)條件列關(guān)于a,b,c方程組,解得a,b(2)先設(shè)直線方程(點(diǎn)斜式),與橢圓方程聯(lián)立解得B點(diǎn)坐標(biāo),由AC與BC垂直,以及AC=BC解出C點(diǎn)縱坐標(biāo),得關(guān)于k的二次方程,即得直線方程
試題解析:(1)由題意可得: ,即,
從而有,
所以橢圓的標(biāo)準(zhǔn)方程為:.
(2)設(shè)直線的方程為,代入,
得,
因?yàn)?/span>為該方程的一個(gè)根,解得,
設(shè),由,得:,
即:
由,即,得,
即,
即,
所以或,
當(dāng)時(shí),直線的方程為,
當(dāng)時(shí),代入得,解得,
此時(shí)直線的方程為.
綜上,直線的方程為,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】麻團(tuán)又叫煎堆,呈球形,華北地區(qū)稱麻團(tuán),是一種古老的中華傳統(tǒng)特色油炸面食,寓意團(tuán)圓。制作時(shí)以糯米粉團(tuán)炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個(gè)長(zhǎng)方體形狀的紙盒中恰好放入4個(gè)球形的麻團(tuán),它們彼此相切,同時(shí)與長(zhǎng)方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長(zhǎng)方體紙盒的表面積為576 ,則一個(gè)麻團(tuán)的體積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為,b,c,且,b,c成等比數(shù)列,.
(1)求的值;
(2)若△ABC的面積為2,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,和都為等腰直角三角形,,,M為AC的中點(diǎn),且.
(1)求二面角P﹣AB﹣C的大;
(2)求直線PM與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓C:(>>0)的右焦點(diǎn)為F(1,0),且過點(diǎn)(1,),過點(diǎn)F且不與軸重合的直線與橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且滿足.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,分別記錄了3月1日到3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
他們所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預(yù)報(bào)當(dāng)溫差為時(shí)的種子發(fā)芽數(shù).
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x﹣x2+3lnx.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:曲線y=f(x)在直線y=2x﹣2的下方(除點(diǎn)外).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中a為常數(shù):e≈2.71828為自然對(duì)數(shù)的底數(shù).
(1)求曲線y=f(x)在x=0處的切線l在兩坐標(biāo)軸上的截距相等,求a的值;
(2)若x>0,不等式恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com