【題目】已知定直線,定點,以坐標軸為對稱軸的橢圓過點且與相切.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)橢圓的弦的中點分別為,若平行于,則斜率之和是否為定值? 若是定值,請求出該定值若不是定值請說明理由.

【答案】(1)(2)斜率之和為定值

【解析】試題分析:)設橢圓的標準方程為,由題意構(gòu)建關(guān)于的方程組,即可得橢圓方程.

(Ⅱ)設點P(x1,y1),Q(x2,y2),可知PQMN,所以kPQ=kMN=1,

設直線PQ的方程為y=x+t,代入橢圓方程并化簡得:3x2+4tx+2t26=0,利用韋達定理可計算

試題解析:

設橢圓的標準方程為

橢圓過點所以,

代入橢圓方程化簡得 ,

因為直線與橢圓相切所以

①②可得, 所以橢圓方程為

(Ⅱ)設點,則有

由題意可知,所以,設直線的方程為,

代入橢圓方程并化簡得

由題意可知

,

通分后可變形得到

將③式代入分子

,

所以斜率之和為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面為等邊三角形,,,,點的中點.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,過右焦點的直線與橢圓交于兩點,且當點是橢圓的上頂點時,,線段的中點為

(1)求橢圓的方程;

(2)延長線段與橢圓交于點,若,求此時的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對數(shù)換底公式:logaN=;

(2)寫出對數(shù)換底公式的一個性質(zhì)(不用證明),并舉例應用這個性質(zhì)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤的是(

A. 中,

B. 在銳角中,不等式恒成立

C. 中,若,則必是等腰直角三角形

D. 中,若,則必是等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,為兩個不同的平面,,為兩條不同的直線,下列命題中正確的是( )

①若,,則 ②若,,則;

③若,,則 ④若,,,則.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點的圓的圓心軸的非負半軸上,且圓截直線所得弦長為

(1)求的標準方程;

(2)若過點且斜率為的直線交圓、兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個空間幾何體的正視圖和俯視圖,則它的側(cè)視圖為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某上市公司股票在30天內(nèi)每股的交易價格P(元)關(guān)于時間t(天)的函數(shù)關(guān)系為,該股票在30天內(nèi)的日交易量Q(萬股)關(guān)于時間t(天)的函數(shù)為一次函數(shù),其圖象過點和點.

1)求出日交易量Q(萬股)與時間t(天)的一次函數(shù)關(guān)系式;

2)用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?

查看答案和解析>>

同步練習冊答案