【題目】如圖,已知等腰梯形中,是的中點,,將沿著翻折成,使平面平面.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點P,使得平面,且.
【解析】
試題( I ) 根據直線與平面垂直的判定定理,需證明垂直平面內的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進而證得平面.(Ⅱ) 由( I )可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據直線與平面平行的判定定理,只要能找到一點P使得PM平行平面內的一條直線即可.由于,故可取線段中點P,中點Q,連結.則,且.由此即可得四邊形是平行四邊形,從而問題得證.
試題解析:( I ) 由題意可知四邊形是平行四邊形,所以,故.
又因為,M為AE的中點所以,
即
又因為,
所以四邊形是平行四邊形.
所以
故.
因為平面平面, 平面平面,平面
所以平面.
因為平面, 所以.
因為,、平面,
所以平面.
(Ⅱ) 以為軸,為軸,為軸建立空間直角坐標系,則,,,.
平面的法向量為.
設平面的法向量為, 因為,,
, 令得,.
所以, 因為二面角為銳角,
所以二面角的余弦值為.
(Ⅲ) 存在點P,使得平面.
法一: 取線段中點P,中點Q,連結.
則,且.
又因為四邊形是平行四邊形,所以.
因為為的中點,則.
所以四邊形是平行四邊形,則.
又因為平面,所以平面.
所以在線段上存在點,使得平面,.
法二:設在線段上存在點,使得平面,
設,(),,因為.
所以.
因為平面, 所以,
所以, 解得, 又因為平面,
所以在線段上存在點,使得平面,.
科目:高中數學 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中( )
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,b∈R,函數f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當0≤x≤1時,
(i)函數f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對x∈[0,1]恒成立,求a+b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數據b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數據分析,為了考察甲球員對球隊的貢獻,現作如下數據統(tǒng)計:
球隊勝 | 球隊負 | 總計 | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計 | 30 | e | n |
(1)求b,c,d,e,n的值,據此能否有97.7%的把握認為球隊勝利與甲球員參賽有關;
(2)根據以往的數據統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當他參加比賽時,求球隊某場比賽輸球的概率;
當他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔當前鋒的概率;
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】智能手機的出現,改變了我們的生活,同時也占用了我們大量的學習時間.某市教育機構從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是: ,.
(1)根據頻率分布直方圖,估計這名手機使用者中使用時間的中位數是多少分鐘? (精確到整數)
(2)估計手機使用者平均每天使用手機多少分鐘? (同一組中的數據以這組數據所在區(qū)間中點的值作代表)
(3)在抽取的名手機使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種農作物可以生長在灘涂和鹽堿地,它的灌溉是將海水稀釋后進行灌溉.某實驗基地為了研究海水濃度對畝產量(噸)的影響,通過在試驗田的種植實驗,測得了該農作物的畝產量與海水濃度的數據如下表:
海水濃度 | |||||
畝產量(噸) | |||||
殘差 |
繪制散點圖發(fā)現,可以用線性回歸模型擬合畝產量(噸)與海水濃度之間的相關關系,用最小二乘法計算得與之間的線性回歸方程為.
(1)求的值;
(2)統(tǒng)計學中常用相關指數來刻畫回歸效果,越大,回歸效果越好,如假設,就說明預報變量的差異有是解釋變量引起的.請計算相關指數(精確到),并指出畝產量的變化多大程度上是由澆灌海水濃度引起的?
(附:殘差,相關指數,其中)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com