設(shè)函數(shù),曲線在點處的切線為.
(1)求;
(2)證明:.
(1) ;(2)詳見解析.
解析試題分析:(1)求的值就一定要建立關(guān)于的兩個方程,通過解方程求出值,這就是方程思想,這里通過斜率關(guān)系確立一個方程,還有一個方程就是要用切點既在直線上,又在曲線上來確立,即用好切點的雙重身份;(2)通過重新構(gòu)造函數(shù),利用導(dǎo)數(shù)知識來研究函數(shù)的極值和最值,進(jìn)而達(dá)到證明不等式的目的,此題如果想直接去研究的最小值,通過最小值比大,來達(dá)到證題的目的,那是很難辦到的,所以說構(gòu)造函數(shù)是需要功底的,也是需要技巧的.
試題解析:(1) 函數(shù)的定義域為,,根據(jù)切點既在直線上,又在曲線上,依題意可得,,故 4分
(2)由(1)知, ,從而等價于.
設(shè)函數(shù),則,所以當(dāng)時,,當(dāng)時,,故在單調(diào)遞減,在 單調(diào)遞增,從而在上的最小值為 10分
設(shè)函數(shù),則,所以當(dāng)時,,當(dāng)時,,故在單調(diào)遞增,在單調(diào)遞減,從而在上的最大值為.又和在上取得最值的條件不同,所以綜上:當(dāng)時,,即. 14分
考點:1.導(dǎo)數(shù)及其應(yīng)用;2.函數(shù)的綜合應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(Ⅰ)若曲線與在公共點處有相同的切線,求實數(shù)的值;
(Ⅱ)若,求方程在區(qū)間內(nèi)實根的個數(shù)(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),為常數(shù).
(1)若,求函數(shù)在上的值域;(為自然對數(shù)的底數(shù),)
(2)若函數(shù)在上為單調(diào)減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)().
(1)求的單調(diào)區(qū)間;(4分)
(2)求所有實數(shù),使對恒成立.(8分)
(注:為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知..
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實數(shù),恒成立,求實數(shù)的取值范圍;
(3) 證明對一切, 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) (R).
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),().
(1)若x=3是的極值點,求在[1,a]上的最小值和最大值;
(2)若在時是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x2+2x+kln x,其中k≠0.
(1)當(dāng)k>0時,判斷f(x)在(0,+∞)上的單調(diào)性;
(2)討論f(x)的極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com