(本題滿分12分)如圖所示,F1、F2是雙曲線x2y2 = 1的兩個焦點,O為坐標原點,

O是以F­1F2為直徑的圓,直線ly = kx + b與圓O相切,并與雙曲線交于A、B兩點.
(Ⅰ)根據(jù)條件求出bk的關(guān)系式;
(Ⅱ)當,且滿足2≤m≤4時,
求△AOB面積的取值范圍.
(Ⅰ) b2 = 2(k2 + 1)(k≠±1)  (Ⅱ)   
(Ⅰ)因為圓O的方程為x2 + y2 = 2,所以d =,可得b2 = 2(k2 + 1)(k≠±1).-------(4分)
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),由,
所以,--(6分)
所以=
=,
因為|AB| =×=
OAB的距離,------(10分)
 所以
=.-----(12分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,定點,問過點的直線的斜角在什么范圍內(nèi)取值時,這條直線與圓:(1)相切,(2)相交,(3)相離,并寫出過點的切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡不可能是(    )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB="2," AD=, BC=,橢圓E以A,B為焦點且經(jīng)過點D.  (1)建立適當?shù)闹苯亲鴺讼?求橢圓E的方程;  (2)若點Q滿足:,問是否存在不平行AB,的直線與橢圓E交于M、N兩點.且|MQ|=|NQ|.若存在,求直線的斜率的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=4x.
(1)若橢圓左焦點及相應(yīng)的準線與拋物線C的焦點F及準線l分別重合,試求橢圓短軸端點B與焦點F連線中點P的軌跡方程;
(2)若M(m,0)是x軸上的一定點,Q是(1)所求軌跡上任一點,試問|MQ|有無最小值?若有,求出其值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線的方程為,

過點M(0,m)且傾斜角為的直線交拋物線于
Ax1,y1),Bx2,y2)兩點,且
(1)求m的值
(2)(文)若點M所成的比為,求直線AB的方程
(理)若點M所成的比為,求關(guān)于的函數(shù)關(guān)系式。                           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題





的坐標;
(2)已知A,B求點C使;
(3)已知橢圓兩焦點F1,F2,離心率e=0.8。求此橢圓長軸上
兩頂點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線過點(-1,2)且與直線垂直,則的方程是 (   )
a.                     b.
c.                     d.

查看答案和解析>>

同步練習冊答案