【題目】從裝有2只紅球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽3次.
(ⅰ)分別求恰2次為紅球的概率及抽全三種顏色球的概率;
(ⅱ)求抽到紅球次數(shù)的數(shù)學(xué)期望及方差.
(Ⅱ)若抽取后不放回,寫出抽完紅球所需次數(shù)的分布列.
【答案】(1) ①;②見解析;(2)見解析.
【解析】分析:(1)(ⅰ)放回事件是獨(dú)立重復(fù)試驗(yàn),根據(jù)獨(dú)立重復(fù)試驗(yàn)概率公式求結(jié)果,(ⅱ) 抽到紅球次數(shù)服從二項(xiàng)分布,根據(jù)二項(xiàng)分布期望與方差公式求結(jié)果,(2)先確定隨機(jī)變量取法,再根據(jù)組合數(shù)求對應(yīng)概率,列表可得分布列.
詳解:(1)抽1次得到紅球的概率為,得白球的概率為得黑球的概率為
①所以恰2次為紅色球的概率為
抽全三種顏色的概率
②~B(3,),則,
(2)的可能取值為2,3,4,5
, ,
,
即分布列為:
2 | 3 | 4 | 5 | |
P |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點(diǎn)M(x0 , y0)在拋物線C2上,過M作C1的切線,切點(diǎn)為A,B(M為原點(diǎn)O時(shí),A,B重合于O),當(dāng)x0=1﹣ 時(shí),切線MA的斜率為﹣ .
(1)求P的值;
(2)當(dāng)M在C2上運(yùn)動時(shí),求線段AB中點(diǎn)N的軌跡方程(A,B重合于O時(shí),中點(diǎn)為O).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某建材商場國慶期間搞促銷活動,規(guī)定:顧客購物總金額不超過800元,不享受任何折扣;如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,并按下表折扣分別累計(jì)計(jì)算:
可以享受折扣優(yōu)惠金額 | 折扣率 |
不超過500元的部分 | |
超過500元的部分 |
若某顧客在此商場獲得的折扣金額為50元,則此人購物實(shí)際所付金額為
A.1500元B.1550元C.1750元D.1800元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為1,線段上有兩個動點(diǎn) , 且 , 則下列結(jié)論中錯誤的是( )
A.
B.三棱錐的體積為定值
C.二面角的大小為定值
D.異面直線所成角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是 ( ).
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50人
B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數(shù)列{an}中,a1=1,,,,由此歸納出{an}的通項(xiàng)公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長為 cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x>0時(shí),;當(dāng)x∈[﹣3,﹣1]時(shí),記f(x)的最大值為m,最小值為n,則m﹣n=________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)環(huán)保意識,某社團(tuán)從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識測試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識是否優(yōu)秀與性別有關(guān);
(2)為參加市舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,現(xiàn)在環(huán)保測試優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為,若隨機(jī)變量表示這3人中通過預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.
附:=
0.500 | 0.400 | 0.100 | 0.010 | 0.001 | |
0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com