【題目】設點O為坐標原點,橢圓的右頂點為A,上頂點為B,過點O且斜率為的直線與直線AB相交M,且.
(Ⅰ)求證:a=2b;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經過P,Q兩點,求橢圓E的方程.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:
(1)利用向量共線的充要條件計算可得a=2b;
(2)利用(1)中的結論聯立直線與橢圓的方程,利用根與系數的關系計算可得橢圓E的方程是.
試題解析:
(Ⅰ)∵A(a,0),B(0,b),,所以,
∴,解得a=2b,
(Ⅱ)由(Ⅰ)知a=2b,∴橢圓E的方程為即x2+4y2=4b2(1)
依題意,圓心C(2,1)是線段PQ的中點,且.
由對稱性可知,PQ與x軸不垂直,設其直線方程為y=k(x-2)+1,
代入(1)得:
(1+4k2)x2-8k(2k-1)x+4(2k-1)2-4b2=0
設P(x1,y1),Q(x2,y2),則,,
由得,解得.
從而x1x2=8-2b2.
于是
解得b2=4,a2=16,∴橢圓E的方程為.
科目:高中數學 來源: 題型:
【題目】(本小題12分)甲、乙兩位學生參加數學競賽培訓,在培訓期間,他們參加的5項預賽成績記錄如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(2)現要從中選派一人參加數學競賽,從統(tǒng)計學的角度考慮,你認為選派哪位學生參加合適?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程關于時間的函數關系式分別為, , , ,有以下結論:
①當時,甲走在最前面;
②當時,乙走在最前面;
③當時,丁走在最前面,當時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結論的序號為 (把正確結論的序號都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯表,并判斷是否有的把握認為平均車速超過的人與性別有關;
平均車數超過 人數 | 平均車速不超過 人數 | 合計 | |
男性駕駛員人數 | |||
女性駕駛員人數 | |||
合計 |
(Ⅱ)以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨即抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數為,若每次抽取的結果是相互獨立的,求的分布列和數學期望
參考公式:,其中.
參考數據:
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(Ⅰ)當a=2時,求(x)在x∈[1,e2]時的最值(參考數據:e2≈7.4);
(Ⅱ)若,有f(x)+g(x)≤0恒成立,求實數a的值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com