【題目】已知拋物線C:,點(diǎn)在x軸的正半軸上,過(guò)點(diǎn)M的直線l與拋線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
若,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準(zhǔn)線相切;
是否存在定點(diǎn)M,使得不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),恒為定值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)證明;(2)見(jiàn)解析
【解析】
寫出直線AB方程為,與拋物線方程聯(lián)立,利用韋達(dá)定理與弦長(zhǎng)公式計(jì)算值,并求出線段AB的中點(diǎn)到準(zhǔn)線的距離,證明該距離等于的一半,即可證明結(jié)論成立;設(shè)直線AB的方程為,并設(shè)點(diǎn)、,列出韋達(dá)定理,結(jié)合弦長(zhǎng)公式得出的表達(dá)式,根據(jù)表達(dá)式為定值得出m的值,從而可求出定點(diǎn)M的坐標(biāo).
當(dāng)時(shí),且直線l的斜率為1時(shí),直線l的方程為,設(shè)點(diǎn)、,
將直線l的方程代入拋物線C的方程,消去y得,,
由韋達(dá)定理可得,,
由弦長(zhǎng)公式可得,
線段AB的中點(diǎn)的橫坐標(biāo)為3,所以,線段AB的中點(diǎn)到拋物線準(zhǔn)線的距離為4,
因此,以AB為直徑的圓與拋物線C的準(zhǔn)線相切;
設(shè)直線l的方程為,設(shè)點(diǎn)、,
將直線l的方程代入拋物線方程并化簡(jiǎn)得,
由韋達(dá)定理可得,,
,同理可得,
所以,為定值,
所以,,即時(shí),恒為定值.
此時(shí),定點(diǎn)M的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓內(nèi)一定點(diǎn),動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切.記動(dòng)圓圓心的軌跡為.
(Ⅰ)求軌跡方程;
(II)過(guò)點(diǎn)的動(dòng)直線l交軌跡于M,N兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以線段MN為直徑的圓恒過(guò)點(diǎn)Q?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018屆河南省南陽(yáng)市第一中學(xué)高三上學(xué)期第八次考試】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在中國(guó)首都北京舉行,會(huì)議期間,達(dá)成了多項(xiàng)國(guó)際合作協(xié)議.假設(shè)甲、乙兩種品牌的同類產(chǎn)品出口某國(guó)家的市場(chǎng)銷售量相等,該國(guó)質(zhì)量檢驗(yàn)部門為了解他們的使用壽命,現(xiàn)從這兩種品牌的產(chǎn)品中分別隨機(jī)抽取300個(gè)進(jìn)行測(cè)試,結(jié)果統(tǒng)計(jì)如下圖所示.
(1)估計(jì)甲品牌產(chǎn)品壽命小于200小時(shí)的概率;
(2)在抽取的這兩種品牌產(chǎn)品中,抽取壽命超過(guò)300小時(shí)的產(chǎn)品3個(gè),設(shè)隨機(jī)變量表示抽取的產(chǎn)品是甲品牌的產(chǎn)品個(gè)數(shù),求的分布列和數(shù)學(xué)期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力,某移動(dòng)支付公司在我市隨機(jī)抽取了100名移動(dòng)支付用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計(jì) | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認(rèn)為每周使用移動(dòng)支付超過(guò)3次的用戶“喜歡使用移動(dòng)支付”,能否在犯錯(cuò)誤概率不超過(guò)的前提下,認(rèn)為是否“喜歡使用移動(dòng)支付”與性別有關(guān)?
(2)每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶,
①求抽取的4名用戶中,既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率;
②為了鼓勵(lì)女性用戶使用移動(dòng)支付,對(duì)抽出的女“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求的數(shù)學(xué)期望.
附表及公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大慶實(shí)驗(yàn)中學(xué)在高二年級(jí)舉辦線上數(shù)學(xué)知識(shí)競(jìng)賽,在已報(bào)名的400名學(xué)生中,根據(jù)文理學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學(xué)成績(jī)的中位數(shù)和眾數(shù);
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半理科生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的文理科生人數(shù)相等.試估計(jì)總體中理科生和文科生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,定長(zhǎng)為3的線段兩端點(diǎn)、分別在軸,軸上滑動(dòng),在線段上,且.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是軌跡上一點(diǎn),從原點(diǎn)向圓作兩條切線分別與軌跡交于點(diǎn),,直線,的斜率分別記為,.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)于曲線上任意點(diǎn)處的切線,總存在上處的切線,使得,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com