【題目】合肥一中、六中為了加強交流,增進友誼,兩校準備舉行一場足球賽,由合肥一中版畫社的同學設計一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.

(1)如何設計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

(2)設畫面的高與寬的比為,且,求為何值時,宣傳畫所用紙張面積最小?

【答案】(1)畫面的高,寬時所用紙張面積最;(2).

【解析】

1)設畫面高為,寬為,紙張面積為,可得到,利用基本不等式可求得最小值,同時確定當時取最小值,從而得到結果;(2)畫面高為,寬為,則,根據的范圍可知,根據(1)中的表達式,結合對號函數(shù)圖象可知時取最小值,從而得到結果.

(1)設畫面高為,寬為,紙張面積為

當且僅當,即時取等號

即畫面的高為,寬為時所用紙張面積最小,最小值為:.

(2)設畫面高為,寬為,則

,又

由(1)知:

由對號函數(shù)性質可知:上單調遞減

,即時,所用紙張面積最小

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,為邊的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若集合A{x|2x3},B{x|x+2)(xa)<0},則a1”AB____條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表

周跑量(km/周)

人數(shù)

100

120

130

180

220

150

60

30

10

(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:

注:請先用鉛筆畫,確定后再用黑色水筆描黑

(2)根據以上圖表數(shù)據計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點

(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

類別

休閑跑者

核心跑者

精英跑者

裝備價格(單位:元)

2500

4000

4500

根據以上數(shù)據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)當時,求的最小值;

(2)設函數(shù)恰有兩個零點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、F分別是橢圓C: + =1(a>b>0)的左頂點、右焦點,點P為橢圓C上一動點,當PF⊥x軸時,AF=2PF.
(1)求橢圓C的離心率;
(2)若橢圓C存在點Q,使得四邊形AOPQ是平行四邊形(點P在第一象限),求直線AP與OQ的斜率之積;
(3)記圓O:x2+y2= 為橢圓C的“關聯(lián)圓”.若b= ,過點P作橢圓C的“關聯(lián)圓”的兩條切線,切點為M、N,直線MN的橫、縱截距分別為m、n,求證: + 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),則下列說法不正確的是( )

A.其圖象開口向上,且始終與軸有兩個不同的交點

B.無論取何實數(shù),其圖象始終過定點

C.其圖象對稱軸的位置沒有確定,但其形狀不會因的取值不同而改變

D.函數(shù)的最小值大于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.

1)求該一元二次函數(shù);

2)要將該函數(shù)圖象的頂點平移到原點,請說出平移的方式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左右焦點分別為,與軸正半軸交于點,若為等腰直角三角形,且直線被圓所截得的弦長為2.

(1)求橢圓的方程;

(2)直線與橢圓交于點,線段的中點為,射線與橢圓交于點,點的重心,求證:的面積為定值.

查看答案和解析>>

同步練習冊答案