在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
(Ⅰ)P(0,4),點P在直線上(Ⅱ)最小值為,最大值為(Ⅲ)或
【解析】
試題分析:(I)把極坐標系下的點化為直角坐標,得P(0,4)2分
因為點P的直角坐標(0,4)滿足直線的方程,所以點P在直線上.4分
(II)因為點Q在曲線C上,故可設點Q的坐標為,5分
從而點Q到直線的距離為
, 6分
由此得,當時,d取得最小值,且最小值為
當時,d取得最大值,且最大值為 8分
(Ⅲ)設平行線m方程: 9分
設O到直線m的距離為d,則 10分
經(jīng)驗證均滿足題意 ,所求方程為或 12分
考點:極坐標化直角坐標及平面內直線與橢圓相交相離的位置關系
點評:極坐標與直角坐標的互化,第二問求距離的最值首先找到距離的表達式,借助于三角函數(shù)參數(shù)的有界性求得最值,第三問是直線與橢圓相交問題,此題求三角形面積用到了弦長,因此聯(lián)立方程求出弦長得到面積
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
5 |
3 |
MN |
MF1 |
MF2 |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
OP |
OQ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com