【題目】已知二次函數(shù)滿足,且

)求的解析式.

)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

)若關(guān)于的方程有區(qū)間上有唯一實數(shù)根,求實數(shù)的取值范圍(相等的實數(shù)根算一個).

【答案】(1).

(2).

(3).

【解析】試題分析:(1)只要設(shè),代入已知條件即可求得;(2)由(1)知是二次函數(shù),其單調(diào)性與對稱軸有關(guān),題意說明其對稱軸不在區(qū)間上;(3)關(guān)于的方程是二次方程,它在區(qū)間上有唯一實數(shù)根,可能是在上是兩個相等的實根,也可能是一根在此區(qū)間上,另一根在此區(qū)間外(注意區(qū)間端點的討論).

試題解析:(1)設(shè),代入

,對于恒成立,故,

又由,得,解得,

2)因為 ,

又函數(shù)上是單調(diào)函數(shù),故,

截得

故實數(shù)的取值范圍是

3)由方程,

,

即要求函數(shù)上有唯一的零點,

,則,代入原方程得3,不合題意;

,則,代入原方程得2,滿足提議,故成立;

,則,代入原方程得,滿足提議,故成立;

時,由

綜上,實數(shù)的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關(guān)系表:

時刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

(1)請用一個函數(shù)來近似描述這個港口的水深y與時間t的函數(shù)關(guān)系;

(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。

Ⅰ)如果該船是旅游船,1:00進港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ( ),若點N在圓O上,求正實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當時,.

(1)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;

⑵寫出函數(shù)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利民中學為了了解該校高一年級學生的數(shù)學成績,從高一年級期中考試成績中抽出100名學生的成績,由成績得到如下的頻率分布直方圖.

根據(jù)以上頻率分布直方圖,回答下列問題:

(1)求這100名學生成績的及格率;(大于等于60分為及格)

(2)試比較這100名學生的平均成績和中位數(shù)的大小.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1)當時,函數(shù)處的切線互相垂直,求的值;

2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;

(3)是否存在正實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,∠BAC=90°,AB= AC = AA1=2,M,N分別是A1B1,BC的中點.

(1)證明:MN平面ACC1A1;

(2)求二面角M﹣AN﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點, 是橢圓的頂點, 是直線與橢圓的另一個交點, .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

同步練習冊答案