【題目】已知二次函數(shù)滿足,且.
()求的解析式.
()若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.
()若關(guān)于的方程有區(qū)間上有唯一實數(shù)根,求實數(shù)的取值范圍(相等的實數(shù)根算一個).
【答案】(1).
(2).
(3).
【解析】試題分析:(1)只要設(shè),代入已知條件即可求得;(2)由(1)知是二次函數(shù),其單調(diào)性與對稱軸有關(guān),題意說明其對稱軸不在區(qū)間上;(3)關(guān)于的方程是二次方程,它在區(qū)間上有唯一實數(shù)根,可能是在上是兩個相等的實根,也可能是一根在此區(qū)間上,另一根在此區(qū)間外(注意區(qū)間端點的討論).
試題解析:(1)設(shè),代入,
得,對于恒成立,故,
又由,得,解得,
∴.
(2)因為 ,
又函數(shù)在上是單調(diào)函數(shù),故或,
截得或.
故實數(shù)的取值范圍是.
(3)由方程得,
令,,
即要求函數(shù)在上有唯一的零點,
①,則,代入原方程得或3,不合題意;
②若,則,代入原方程得或2,滿足提議,故成立;
③若△,則,代入原方程得,滿足提議,故成立;
④若且且時,由得.
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關(guān)系表:
時刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請用一個函數(shù)來近似描述這個港口的水深y與時間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。
Ⅰ)如果該船是旅游船,1:00進港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?
Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時曲線在點處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ( ),若點N在圓O上,求正實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當時,.
(1)已畫出函數(shù)在軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;
⑵寫出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利民中學為了了解該校高一年級學生的數(shù)學成績,從高一年級期中考試成績中抽出100名學生的成績,由成績得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問題:
(1)求這100名學生成績的及格率;(大于等于60分為及格)
(2)試比較這100名學生的平均成績和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,函數(shù)與在處的切線互相垂直,求的值;
(2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;
(3)是否存在正實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,∠BAC=90°,AB= AC = AA1=2,M,N分別是A1B1,BC的中點.
(1)證明:MN∥平面ACC1A1;
(2)求二面角M﹣AN﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點, 是橢圓的頂點, 是直線與橢圓的另一個交點, .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com