【題目】據(jù)權(quán)威部門(mén)統(tǒng)計(jì),高中學(xué)生眼睛近視已是普遍現(xiàn)象,這與每個(gè)學(xué)生是否科學(xué)用眼有很大關(guān)系.每年55日是全國(guó)愛(ài)眼日,我市某中學(xué)在此期間開(kāi)展了一系列的用眼衛(wèi)生教育活動(dòng).為了解本校學(xué)生用眼衛(wèi)生情況,學(xué)校醫(yī)務(wù)室隨機(jī)抽取了100名學(xué)生對(duì)其進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生不間斷用眼時(shí)間(單位:分鐘)的頻率分布直方圖,且將不間斷用眼時(shí)間不低于60分鐘的學(xué)生稱(chēng)為不愛(ài)護(hù)眼者,低于60分鐘的學(xué)生稱(chēng)為愛(ài)護(hù)眼者”.

1)根據(jù)頻率分布直方圖,求這100名學(xué)生不間斷用眼時(shí)間的平均數(shù)和中位數(shù)(結(jié)果精確到0.1);

2)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為不愛(ài)護(hù)眼者與性別有關(guān)?

愛(ài)護(hù)眼者

不愛(ài)護(hù)眼者

合計(jì)

45

15

合計(jì)

3)在不間斷用眼時(shí)間為兩組人中先按分層抽樣的方法任意選取5人,再?gòu)倪@5人中隨機(jī)抽取2人了解他們的視力狀況,求這兩人來(lái)自不同組別的概率.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】1)平均數(shù)為,中位數(shù)為 .2列聯(lián)表答案見(jiàn)解析,有99%的把握認(rèn)為不愛(ài)護(hù)眼者與性別有關(guān).3

【解析】

1)分別利用平均數(shù)和中位數(shù)的公式求解.

2)根據(jù)頻率分布直方圖可得到愛(ài)護(hù)眼者人數(shù),不愛(ài)護(hù)眼者的人數(shù),由此完成列聯(lián)表,然后根據(jù)列聯(lián)表,由公式求得,再與臨界表對(duì)比下結(jié)論.

3)根據(jù)頻率分布直方圖知,在這兩組中分別取2人和3人,用字母分別表示為.列舉出基本事件總數(shù),找出這兩人來(lái)自不同組別的基本事件數(shù),代入古典概型的概率公式求解.

1)這100個(gè)同學(xué)不間斷用眼時(shí)間的平均數(shù)為

設(shè)其中位數(shù)為,則

解得

2)由頻率分布直方圖知,愛(ài)護(hù)眼者人數(shù)為人,

不愛(ài)護(hù)眼者為人,由此得列聯(lián)表

愛(ài)護(hù)眼者

不愛(ài)護(hù)眼者

合計(jì)

20

25

45

40

15

55

合計(jì)

60

40

100

所以,有99%的把握認(rèn)為不愛(ài)護(hù)眼者與性別有關(guān).

3)由頻率分布直方圖知,在這兩組中分別取2人和3人,用字母分別表示為.設(shè)事件C這兩人來(lái)自不同組別,

其基本事件有:

10個(gè),

事件C包含基本事件有:,

6個(gè),

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品好評(píng)率為,對(duì)服務(wù)好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.

(1)是否可以在犯錯(cuò)誤率不超過(guò)0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶(hù)回訪,求只有一次好評(píng)的概率.

注:1.

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

注:2.,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) Aa , b),拋物線Ca ≠0 , b ≠0 , a ≠2p).過(guò)點(diǎn) A 作直線l ,交拋物線 C 于點(diǎn)P 、Q .如果以線段 PQ 為直徑的圓過(guò)拋物線C 的頂點(diǎn),求直線 l 的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題實(shí)數(shù)滿(mǎn)足(其中),命題方程表示雙曲線.

I)若,且為真命題,求實(shí)數(shù)的取值范圍;

(Ⅱ)的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且

)求拋物線的方程;

)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年,我國(guó)繼續(xù)實(shí)行個(gè)人所得稅專(zhuān)項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金、贍養(yǎng)老人等六項(xiàng)專(zhuān)項(xiàng)附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取50人調(diào)查專(zhuān)項(xiàng)附加扣除的享受情況.

(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的50人中,享受至少兩項(xiàng)專(zhuān)項(xiàng)附加扣除的員工有5人,分別記為.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這5人中隨機(jī)抽取2人接受采訪.

員工

項(xiàng)目

A

B

C

D

E

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

贍養(yǎng)老人

×

×

×

1)試用所給字母列舉出所有可能的抽取結(jié)果;

2)設(shè)為事件抽取的2人享受的專(zhuān)項(xiàng)附加扣除全都不相同,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王投資1萬(wàn)元2萬(wàn)元、3萬(wàn)元獲得的收益分別是4萬(wàn)元、9萬(wàn)元、16萬(wàn)元為了預(yù)測(cè)投資資金x(萬(wàn)元)與收益y萬(wàn)元)之間的關(guān)系,小王選擇了甲模型和乙模型.

1)根據(jù)小王選擇的甲、乙兩個(gè)模型,求實(shí)數(shù)a,b,c,p,q,r的值

2)若小王投資4萬(wàn)元,獲得收益是25.2萬(wàn)元,請(qǐng)問(wèn)選擇哪個(gè)模型較好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案