如圖,已知△ADB和△ADC都是以D為直角頂點(diǎn)的直角三角形,且AD=BD=CD,∠BAC=60°,E為AC的中點(diǎn),那么以下向量為平面ACD的法向量的為

[  ]
A.

B.

C.

D.

答案:B
解析:

判斷平面ACD的法向量,可以從平面ACD中找出、中的兩個向量,分別與選擇肢中的向量求數(shù)量積,判斷垂直而得,也可以直接利用已知邊角關(guān)系判斷線面垂直.設(shè)AD=1,則BD=CD=1,因?yàn)椤鰾DA、△ACD為直角三角形,所以AB=AC=.又因?yàn)椤螧AC=60°,所以BC=.所以△BCD也是直角三角形(BD⊥CD),從而可得BD⊥平面ACD.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ADB和△ADC都是以D為直角頂點(diǎn)的直角三角形,且AD=BD=CD,∠BAC=60°.求證:BD⊥平面ADC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實(shí)數(shù),如果矩陣M=
1a
b2
所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點(diǎn),判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ADB和△ADC都是以D為直角頂點(diǎn)的直角三角形,且AD=BD=CD,∠BAC=60°,E為AC的中點(diǎn),那么以下向量為平面ACD的法向量是(    )

A.              B.              C.              D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《3.1 空間向量及其運(yùn)算》2013年同步練習(xí)3(解析版) 題型:填空題

如圖所示,已知△ADB和△ADC都是以D為直角頂點(diǎn)的直角三角形,且AD=BD=CD,∠BAC=60°.求證:BD⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊答案