【題目】已知拋物線Cy22px的焦點為F,過點F且斜率為1的直線l截得圓:x2+y2p2的弦長為2.

1)求拋物線C的方程;

2)若過點F作互相垂直的兩條直線l1l2,l1與拋物線C交于AB兩點,l2與拋物線C交于DE兩點,MN分別為弦AB、DE的中點,求|MF||NF|的最小值.

【答案】1y28x232

【解析】

1)求得拋物線C的焦點,可得直線l的方程,求得圓心(0,0)到直線的距離,由圓內(nèi)的垂徑定理,結(jié)合勾股定理,解方程可得p,進(jìn)而得到拋物線的方程;

2)求得焦點F的坐標(biāo),由已知可得ABDE,兩直線ABDE的斜率都存在且均不為0.設(shè)直線AB的斜率為k,則直線CD的斜率為,故直線AB的方程為ykx2.聯(lián)立拋物線的方程,運用韋達(dá)定理和中點坐標(biāo)公式,求得M的坐標(biāo),同理可得N的坐標(biāo),再由兩點的距離公式,結(jié)合基本不等式可得所求最小值.

1)由y22px的焦點為F,0),

可得直線l的方程為lyx,

圓心到直線l的距離為d,

d2+14p2,可得p4,

故拋物線C的方程為y28x;

2)由(1)知焦點為F2,0.

由已知可得ABDE,所以兩直線AB、DE的斜率都存在且均不為0.

設(shè)直線AB的斜率為k,則直線CD的斜率為

故直線AB的方程為ykx2.

聯(lián)立方程組,消去x,整理得ky28y16k0,

設(shè)點Ax1y1),Bx2y2),則y1+y2.

因為MxM,yM)為弦AB的中點,所以yMy1+y2.

yMkxM2),得xM22,故點M2,),

同理,可得N4k2+2,﹣4k),

|NF|4

|MF|.

所以|MF||NF|41616|k|

16×232,

當(dāng)且僅當(dāng)|k|,即k=±1時,等號成立.

所以|MF||NF|的最小值為32.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研團(tuán)隊對例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為名非吸煙患者中,重癥人數(shù)為人,重癥比例為.根據(jù)以上數(shù)據(jù)繪制列聯(lián)表,如下:

吸煙人數(shù)

非吸煙人數(shù)

總計

重癥人數(shù)

30

120

150

輕癥人數(shù)

100

800

900

總計

130

920

1050

(1)根據(jù)列聯(lián)表數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為新冠肺炎重癥和吸煙有關(guān)?

(2)已知每例重癥患者平均治療費用約為萬元,每例輕癥患者平均治療費用約為萬元.現(xiàn)有吸煙確診患者20人,記這名患者的治療費用總和為,求.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時間的自主管理作為重點項目,學(xué)校有關(guān)處室制定了高中生自習(xí)課時間自主管理方案”.現(xiàn)準(zhǔn)備對該方案進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該方案,調(diào)查人員分別在各個年級隨機(jī)抽取若干學(xué)生對該方案進(jìn)行評分,并將評分分成七組,繪制成如圖所示的頻率分布直方圖.

相關(guān)規(guī)則為①采用百分制評分,內(nèi)認(rèn)定為對該方案滿意,不低于80分認(rèn)定為對該方案非常滿意,60分以下認(rèn)定為對該方案不滿意;②學(xué)生對方案的滿意率不低于即可啟用該方案;③用樣本的頻率代替概率.

1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該方案的概率,并根據(jù)頻率分布直方圖求學(xué)生對該方案評分的中位數(shù).

2)根據(jù)所學(xué)統(tǒng)計知識,判斷該校是否啟用該方案,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是直角梯形,AB2CD2PD2,PC,且有PDAD,ADCD,ABCD.

1)證明:PD⊥平面ABCD;

2)若四棱錐PABCD的體積為,求四棱錐PABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)在點處的切線是否過定點?若過,求出該點的坐標(biāo);若不過,請說明理由.

2)若有最大值,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點A是直線上的動點,過作直線,,線段的垂直平分線與交于點.

1)求點的軌跡的方程;

2)若點,是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求在點處的切線方程;

2)(i)若恒成立,求的取值范圍;

i i)當(dāng)時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,平面平面,,分別在線段上,且是等腰直角三角形.

1)若,求證:平面

2,是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)相關(guān)數(shù)據(jù)統(tǒng)計,2019年底全國已開通基站13萬個,部分省市的政府工作報告將推進(jìn)通信網(wǎng)絡(luò)建設(shè)列入2020年的重點工作,今年一月份全國共建基站3萬個.

1)如果從2月份起,以后的每個月比上一個月多建設(shè)2000個,那么,今年底全國共有基站多少萬個.(精確到0.1萬個)

2)如果計劃今年新建基站60萬個,到2022年底全國至少需要800萬個,并且,今后新建的數(shù)量每年比上一年以等比遞增,問2021年和2022年至少各建多少萬個オ能完成計劃?(精確到1萬個)

查看答案和解析>>

同步練習(xí)冊答案