【題目】已知a,b∈R,若a2+b2﹣ab=1,則ab的取值范圍是

【答案】[ ,1]
【解析】解:當(dāng)ab>0時(shí), ∵a,b∈R,且a2+b2﹣ab=1,
∴a2+b2=ab+1,
又a2+b2≥2ab當(dāng)且僅當(dāng)a=b時(shí)“=”成立;
∴ab+1≥2ab,
∴ab≤1,當(dāng)且僅當(dāng)a=b=±1時(shí)“=”成立;
即0<ab≤1;
當(dāng)ab=0時(shí),不妨設(shè)a=0,則b=±1,滿足題意;
當(dāng)ab<0時(shí),
又∵a2+b2≥﹣2ab,
∴ab+1≥﹣2ab,
∴﹣3ab≤1,
∴ab≥﹣ ,
當(dāng)且僅當(dāng)a= ,b=﹣ ,或a=﹣ 、b= 時(shí)“=”成立;
即0>ab≥﹣
綜上,ab的取值范圍是[﹣ ,1].
故答案為[ ,1].
靈活應(yīng)用基本不等式a2+b2≥2ab,即可求出ab的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中.

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)若對(duì)任意,均有,求的取值范圍;

(3)當(dāng)時(shí),設(shè),若的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正四棱錐P﹣ABCD,B1為PB的中點(diǎn),D1為PD的中點(diǎn),則兩個(gè)棱錐A﹣B1CD1 , P﹣ABCD的體積之比是(
A.1:4
B.3:8
C.1:2
D.2:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集為實(shí)數(shù)集R.
(1)若m=5,求A∪B,(RA)∩B;
(2)若A∩B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:(4x﹣3)2≤1;命題q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: =1(a>b>0)的離心率為 ,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn).求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1:(x+3)2+y2=1和圓C2:(x﹣3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案