已知函數(shù).
(1) 當時,討論的單調(diào)性;
(2)設,當若對任意存在 使求實數(shù)的取值范圍。
(1)f(x)在(0,1),()上是增函數(shù),在(1,)上是減函數(shù);(2).
解析試題分析:(1)根據(jù)題意可以求得,當,即時,可通過列表通過f’(x)的正負性來判斷f(x)的單調(diào)性;
可將變形為,∴問題就等價于求當存在,使成立的b的取值范圍,而,∴問題進一步等價于求存在,使時b的取值范圍,通過參變分離,可得存在,求使2b≥成立b的范圍,∴只需2b≥即可.
(1) 3分
當,即時,此時f(x)的單調(diào)性如下:x (0,1) 1 (1,) () + 0 - 0 + f(x) 增 減 增
當時,f(x)在(0,1),()上是增函數(shù),在(1,)上是減函數(shù) 7分;
(2)由(1)知,當時,f(x)在(0,1)上是增函數(shù),在(1,2)上是減函數(shù).
于是時,
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x) 在它們的交點P(2,c)處有相同的切線(P為切點),求實數(shù)a,b的值;
(2)令h (x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)減區(qū)間為.
①求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a);
②若|h(x)|≤3在x∈[-2,0]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=ax-,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=(ax+1)ex.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a>0時,求函數(shù)f(x)在區(qū)間[-2,0]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
用總長為14.8米的鋼條制成一個長方體容器的框架,如果所制的容器的底面的長比寬多0.5米,那么高為多少時容器的容器最大?并求出它的最大容積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(14分)(2011•天津)已知函數(shù)f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.
(Ⅰ)當t=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)當t≠0時,求f(x)的單調(diào)區(qū)間;
(Ⅲ)證明:對任意的t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若過點存在3條直線與曲線相切,求t的取值范圍;
(3)問過點分別存在幾條直線與曲線相切?(只需寫出結論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com