設(shè){an},{bn}都是各項(xiàng)為正數(shù)的數(shù)列,對任意的正整數(shù)n,都有an,bn2,an+1成等差數(shù)列,bn2,an+1,bn+12成等比數(shù)列.
(1)證明數(shù)列{bn}是等差數(shù)列;
(2)如果a1=1,b1=2,記數(shù)列的前n項(xiàng)和為Sn,問是否存在常數(shù)λ,使得bn>λSn對任意n∈N*都成立?若存在,求出λ的取值范圍;若不存在,請說明理由.
【答案】分析:(1)利用已知條件可得數(shù)列{bn}與{an}的遞推關(guān)系代入2bn2=an+an+1整理,然后利用等差中項(xiàng)的證明數(shù)列{bn}為等差數(shù)列
(2)由a1=1,b1=2及①得a2=7,再由②得b2=從而有a2=7,b2=從而可得等差數(shù)列{bn}的首項(xiàng)b1=2,公差d=b2-b1=,∴bn=,又an=bn-1bn可得數(shù)列{an}通項(xiàng)公式;假設(shè)存在常數(shù)λ,使得bn>λSn對任意n∈N*都成立,則有(n∈N*),∴,利用研究,問題得解.
解答:解:由題意,2bn2=an+an-1①,an+12=bn2bn+12
(1)∵an>0,bn>0,∴由②得an+1=bnbn+1,從而當(dāng)n≥2時(shí),an=bn-1bn,代入①式得2bn2=bn-1bn+bnbn+1,即2bn=bn-1+bn+1(n≥2),∴數(shù)列{bn}是等差數(shù)列;
(2)a1=1,b1=2及①得a2=7,再由②得b2=,∴等差數(shù)列{bn}的首項(xiàng)b1=2,公差d=b2-b1=,∴bn=,
當(dāng)n≥2時(shí),an=bn-1bn=,當(dāng)n=1時(shí),a1=1也成立
∴數(shù)列{an}通項(xiàng)公式為an=
∴數(shù)列的前n項(xiàng)和=
假設(shè)存在常數(shù)λ,使得bn>λSn對任意n∈N*都成立,則有(n∈N*),∴
,當(dāng)且僅當(dāng)時(shí)等號成立,∴當(dāng)n=1時(shí),的最小值為10,,
故存在常數(shù)λ<2,使得bn>λSn對任意n∈N*都成立
點(diǎn)評:(1)等差數(shù)列的證明常用的方法(i)定義法:an-an-1=d;(ii)等差中項(xiàng)法:2an=an-1+an+1
(2)裂項(xiàng)求和是數(shù)列求和中的重要方法,要注意其適用的結(jié)構(gòu)特點(diǎn)
(3)恒成立問題,利用分離參數(shù)法,結(jié)合求最值求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an},{bn}是兩個數(shù)列,M(1,2),An(2,an),Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點(diǎn).對n∈N*,若三點(diǎn)M,An,B共線,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上;
(3)記數(shù)列{an}、{bn}的前m項(xiàng)和分別為Am和Bm,對任意自然數(shù)n,是否總存在與n相關(guān)的自然數(shù)m,使得anBm=bnAm?若存在,求出m與n的關(guān)系,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an},{bn}均為正項(xiàng)等比數(shù)列,將它們的前n項(xiàng)之積分別記為An,Bn,若
An
Bn
=2n2-n
,則
a5
b5
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列{bn},設(shè)An、Bn分別是數(shù)列{an}和{bn}的前n項(xiàng)和.
(1)a10是數(shù)列{bn}的第幾項(xiàng);
(2)是否存在正整數(shù)m,使Bm=2010?若不存在,請說明理由;否則,求出m的值;
(3)設(shè)am是數(shù)列{bn}的第f(m)項(xiàng),試比較:Bf(m)與2Am的大小,請?jiān)敿?xì)論證你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an},{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a39+b39( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(任選一題)
(1)已知α、β為實(shí)數(shù),給出下列三個論斷:
①|(zhì)α-β|≤|α+β|②|α+β|>5  ③|α|>2
2
,|β|>2
2

以其中的兩個論斷為條件,另一個論斷為結(jié)論,寫出你認(rèn)為正確的命題是
①③⇒②
①③⇒②

(2)設(shè){an}和{bn}都是公差不為零的等差數(shù)列,且
lim
n→∞
an
bn
=2
,則
lim
n→∞
b1+b2+…+bn
na2n
的值為
1
8
1
8

查看答案和解析>>

同步練習(xí)冊答案