精英家教網 > 高中數學 > 題目詳情
已知拋物線y2=4a(x+a)(a>0),過原點O作一直線交拋物線于A、B兩點,如圖所示,試求|OA|·|OB|的最小值。
解:設直線AB的參數方程為(t為參數)
代入y2=4a(x+a)中得:t2sin2α-4atcosα-4a2=0
∴|OA||OB|=|t1t2|=
時,|OA||OB|取最小值。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
2
,過拋物線C1的焦點F作傾斜角為
π
4
的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(1)求點P和Q的坐標;
(2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2003•東城區(qū)二模)已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
2
,過拋物線C1的焦點F作傾斜角為
π
4
的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(Ⅰ)求點P和Q的坐標;
(Ⅱ)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程;
(Ⅲ)設點A(t,0)(常數t>4),當a在閉區(qū)間〔1,2〕內變化時,求△APQ面積的最大值,并求相應a的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
2
,過拋物線C1的焦點F作傾斜角為
π
4
的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(1)求點P和Q的坐標;
(2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:8.3 拋物線(解析版) 題型:解答題

已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為,過拋物線C1的焦點F作傾斜角為的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(1)求點P和Q的坐標;
(2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

查看答案和解析>>

同步練習冊答案