【題目】已知拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),且這兩條切線(xiàn)相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線(xiàn)段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過(guò)的直線(xiàn)與線(xiàn)段為直徑的圓相切,切點(diǎn)為,且直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),求的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為可得,從而得到拋物線(xiàn)的方程,然后設(shè)出切線(xiàn)切線(xiàn)的方程為,由求得,由切點(diǎn)在拋物線(xiàn)上可得到,即為所求。(2)由(1)得到以線(xiàn)段為直徑的圓為圓。由題意只需考慮斜率為正數(shù)的直線(xiàn)即可,根據(jù)幾何知識(shí)得,故的方程為,由弦長(zhǎng)公式可得,又,所以,最后根據(jù)可得。

試題解析:

(1)由拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為,得

則拋物線(xiàn)的方程為.

設(shè)切線(xiàn)的方程為,代入,

當(dāng)時(shí),點(diǎn)的橫坐標(biāo)為

當(dāng)時(shí),同理可得.

綜上得。

(2)由(1)知, ,

所以以線(xiàn)段為直徑的圓為圓

根據(jù)對(duì)稱(chēng)性,只要探討斜率為正數(shù)的直線(xiàn)即可,

因?yàn)?/span>為直線(xiàn)與圓的切點(diǎn),

所以, ,

所以

所以,

所以直線(xiàn)的方程為

消去整理得,

因?yàn)橹本(xiàn)與圓相交,所以。

設(shè),則

所以,

所以

設(shè),因?yàn)?/span>,所以,

所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銳角△ABC中,其內(nèi)角A,B滿(mǎn)足:2cosA=sinB﹣ cosB.
(1)求角C的大;
(2)D為AB的中點(diǎn),CD=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線(xiàn)C1 , A,B兩點(diǎn)的極坐標(biāo)分別為(2, )和(2, ),將曲線(xiàn)C1上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線(xiàn)C2
(1)寫(xiě)出C,D的直角坐標(biāo)及曲線(xiàn)C2的參數(shù)方程;
(2)設(shè)M為C2上任意一點(diǎn),求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市戶(hù)居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶(hù)中,用分層抽樣的方法抽取戶(hù)居民,則月平均用電量在的用戶(hù)中應(yīng)抽取多少戶(hù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷(xiāo)量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫 (℃)與該小賣(mài)部的這種飲料銷(xiāo)量(杯),得到如下數(shù)據(jù):

日期

1月11日

1月12日

1月13日

1月14日

1月15日

平均氣溫(℃)

9

10

12

11

8

銷(xiāo)量(杯)

23

25

30

26

21

(1)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程;

(2)據(jù)(1)中所得的線(xiàn)性回歸方程,若天氣預(yù)報(bào)1月16日的白天平均氣溫7(℃),請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷(xiāo)量.

(參考公式:,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為 ,橢圓C上的點(diǎn)到右焦點(diǎn)的最大距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率存在的直線(xiàn)l與橢圓C交于A,B兩點(diǎn),并且滿(mǎn)足|2 + |=|2 |,求直線(xiàn)在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,若方程有四個(gè)不同的解,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣2sin2x+2 sinxcosx+1.
(1)求f(x)的最小正周期及對(duì)稱(chēng)中心;
(2)若x∈[﹣ , ],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB= ,cosB= ,則a+c的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案