【題目】小明設(shè)計(jì)了一款正四棱錐形狀的包裝盒,如圖所示,是邊長(zhǎng)為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)正四棱錐形狀的包裝盒,設(shè)正四棱錐底面正方形的邊長(zhǎng)為.
(1)試用表示該四棱錐的高度,并指出的取值范圍;
(2)若要求側(cè)面積不小于,求該四棱錐的高度的最大值,并指出此時(shí)該包裝盒的容積.
【答案】(1);(2),.
【解析】
(1)設(shè)正四棱錐側(cè)面等腰三角形高為,由正方形,可得,再由組成直角三角形,即可得到關(guān)系,進(jìn)而求出的范圍;
(2)利用(1)中關(guān)系,求出側(cè)面積關(guān)于的函數(shù),進(jìn)一步求出滿足條件的范圍,可求出的最大值,即可求出結(jié)論.
(1)設(shè)正四棱錐側(cè)面等腰三角形高為,在正方形中,
,
在四棱錐中,,
,
,
;
(2)四棱錐的側(cè)面積,
,解得,
,當(dāng)時(shí),
,
此時(shí)包裝盒的容積為,
所以滿足條件的四棱錐的高度的最大值為20,
此時(shí)該包裝盒的容積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下命題:①“若x2+ y2 ≠0,則x,y不全為零”的否命題;②“正多邊形都相似”的逆命題;③“若m>0,則x2+x-m=0有實(shí)根”的逆否命題;其中真命題的序號(hào)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若是的一個(gè)極值點(diǎn),且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率,且橢圓C的短軸長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)橢圓上的三個(gè)動(dòng)點(diǎn).
(i)若直線過(guò)點(diǎn)D,且點(diǎn)是橢圓的上頂點(diǎn),求面積的最大值;
(ii)試探究:是否存在是以為中心的等邊三角形,若存在,請(qǐng)給出證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形中,,,點(diǎn)為線段上一動(dòng)點(diǎn),現(xiàn)將沿折起,使點(diǎn)在面內(nèi)的射影在直線上,當(dāng)點(diǎn)從運(yùn)動(dòng)到,則點(diǎn)所形成軌跡的長(zhǎng)度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線l,交曲線C于不同于N的兩點(diǎn)A,B,直線NA,NB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,角A,B,C的對(duì)邊分別為a,b,c,.
(1)求角C;
(2)設(shè)D為邊AC上一點(diǎn),AD=BD,若BC=2,的面積為3,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為,該橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(I)求橢圓的方程;
(Ⅱ)如圖,若斜率為的直線與軸,橢圓順次交于點(diǎn)在橢圓左頂點(diǎn)的左側(cè))且,求證:直線過(guò)定點(diǎn);并求出斜率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com