【題目】定義:若兩個(gè)二次曲線的離心率相等,則稱這兩個(gè)二次曲線相似.如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,右頂點(diǎn)為A,以其短軸的兩個(gè)端點(diǎn)B1 , B2及其一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是邊長(zhǎng)為6的正三角形,M是C上異于B1 , B2的一個(gè)動(dòng)點(diǎn),△MB1B2的重心為G,G點(diǎn)的軌跡記為C1

(1)(i)求C的方程;
(ii)求證:C1與C相似;
(2)過(guò)B1點(diǎn)任作一直線,自下至上依次與C1、x軸的正半軸、C交于不同的四個(gè)點(diǎn)P,Q,R,S,求 的取值范圍.

【答案】
(1)(i)解:設(shè)C的方程: + =1(a>b>0),則

∴a=6,b=3,

∴C的方程: =1;

(ii)證明:設(shè)G(x,y),M(x0,y)(x0≠0),則x0=3x,y0=3y

把點(diǎn)M(3x,3y)的坐標(biāo)代入C的方程,得軌跡C1的方程為 =1(x≠0),

∴軌跡C1也為橢圓(除去(0,﹣1),(0,1)兩點(diǎn)),求得a1=2,c1= ,e1= ,

∵C的離心率e= ,

∴e1=e,

∴C1與C相似;


(2)解:設(shè)直線方程為y=kx﹣3(k>0),代入C的方程得(1+4k2)x2﹣24kx=0,∴xS= ,yS= ,

=

代入C1的方程得(1+4k2)x2﹣24kx+32=0,由k>0,△>0得k> ,

由韋達(dá)定理得xP+xR= ,xPxR= ,

∴|PR|2=(1+k2)[ ].

∵|AQ|=6﹣ = ,

=

令f(k)= (k

則f′(k)= <0

∴f(k)在( ,+∞)上是減函數(shù),

)=

∴0<


【解析】(1)(i)設(shè)C的方程: + =1(a>b>0),則 ,求出a,b,即可求C的方程;(ii)求出軌跡C1 , 可得離心率相等,即可證明C1與C相似;(2)設(shè)直線方程為y=kx﹣3(k>0),代入橢圓方程,求出相應(yīng)線段的長(zhǎng),可得 = 構(gòu)造函數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可確定 的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m在[﹣ ,3]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)設(shè)函數(shù)h(x)=ex﹣ex+4n2﹣2n(e為自然對(duì)數(shù)的底數(shù)),如果對(duì)任意的x1 , x2∈[ ,2],都有f(x1)≤h(x2)恒成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠為了研究印刷單冊(cè)書(shū)籍的成本y(單位:元)與印刷冊(cè)數(shù)x(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,甲:

為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):

)分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較,的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書(shū)上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率為0.8)或10千冊(cè)(概率為0.2),若印刷廠以沒(méi)測(cè)5元的價(jià)格將書(shū)籍出售給訂貨商,問(wèn)印刷廠二次印刷8千冊(cè)還是10千冊(cè)恒獲得更多的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題
(1)計(jì)算log2.56.25+lg0.01+ln ﹣2
(2)已知tanα=﹣3,且α是第二象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若 ,試求f(x)在區(qū)間[﹣2,6]上的最值;
(3)是否存在m,使f(2( 2﹣4)+f(4m﹣2( ))>0對(duì)任意x∈[1,2]恒成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題中,正確的是(
A.“若 ,則 ”的逆命題
B.命題“?x∈R, ”的否定
C.“面積相等的三角形全等”的否命題
D.“若A∩B=B,則A?B”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2csinBcosA﹣bsinC=0.
(1)求角A;
(2)若△ABC的面積為 ,b+c=5,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x(x∈[﹣1,2])的值域?yàn)榧螦,g(x)=ax+2(x∈[﹣1,2])的值域?yàn)榧螧.若AB,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案