【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù) 的值分別為( )

A. B. C. D.

【答案】C

【解析】由頻率分布直方圖知組距為0.1,4.34.4間的頻數(shù)為10000.10.1=10, 4.44.5間的頻數(shù)為10000.10.3=30,又前4組的頻數(shù)成等比數(shù)列,所以公比為3,6組頻數(shù)成等差數(shù)列,且共有1000-130=870,從而4.64.7間的頻數(shù)最大,,所以a=0.27,設(shè)公差為d, ,解得d=-5, ,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市將建一個制藥廠,但該廠投產(chǎn)后預(yù)計每天要排放大約80噸工業(yè)廢氣,這將造成極大的環(huán)境污染.為了保護(hù)環(huán)境,市政府決定支持該廠貸款引進(jìn)廢氣處理設(shè)備來減少廢氣的排放,該設(shè)備可以將廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體,經(jīng)測算,制藥廠每天利用設(shè)備處理廢氣的綜合成本(元)與廢氣處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理噸工業(yè)廢氣可得價值為元的某種化工產(chǎn)品并將之利潤全部用來補(bǔ)貼廢氣處理.

(1)若該制藥廠每天廢氣處理量計劃定位20噸時,那么工廠需要每天投入的廢氣處理資金為多少元?

(2)若該制藥廠每天廢氣處理量計劃定為噸,且工廠不用投入廢氣處理資金就能完成計劃的處理量,求的取值范圍;

(3)若該制藥廠每天廢氣處理量計劃定為)噸,且市政府決定為處理每噸廢氣至少補(bǔ)貼制藥廠元以確保該廠完成計劃的處理量總是不用投入廢氣處理資金,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實數(shù),使得,試判斷的大小關(guān)系并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一份測試題包括6道選擇題,每題只有一個選項是正確的.如果一個學(xué)生對每一道題都隨機(jī)猜一個答案,用隨機(jī)模擬方法估計該學(xué)生至少答對3道題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆廣西陸川縣中學(xué)高三文上學(xué)期二!恳阎瘮(shù).

I)求函數(shù)的單調(diào)區(qū)間;

II)若上恒成立,求實數(shù)的取值范圍;

III)在(II)的條件下,對任意的,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),().

(1)若函數(shù)的圖象在上有兩個不同的交點,求實數(shù)的取值范圍;

(2)若在上不等式恒成立,求實數(shù)的取值范圍;

(3)證明:對于時,任意,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分,第(1)問 6 分,第(2)問 6 分)

某品牌新款夏裝即將上市,為了對夏裝進(jìn)行合理定價,在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A店

B店

C店

售價(元)

80

86

82

88

84

90

銷售量(件)

88

78

85

75

82

66

(1)以三家連鎖店分別的平均售價和平均銷量為散點,求出售價與銷量的回歸直線方程

(2)在大量投入市場后,銷售量與單價仍然服從(1)中的關(guān)系,且該夏裝成本價為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價應(yīng)定為多少元(保留整數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

)若恒成立,求的取值范圍;

)設(shè),,(為自然對數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案