【題目】如圖,已知四邊形為菱形,且,取中點(diǎn)為.現(xiàn)將四邊形沿折起至,使得.

)求證:平面;

)求二面角的余弦值;

)若點(diǎn)滿足,當(dāng)平面時(shí),求的值.

【答案】)見解析;;(.

【解析】

)只需證明,,由線面垂直的判定定理可得證明;

)以為原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,求得平面的法向量和平面的法向量.設(shè)二面角的大小為,可知為銳角,利用空間向量法即可得到所求值;

)由計(jì)算出向量的坐標(biāo),由,計(jì)算可得所求值.

)在左圖中,為等邊三角形,E中點(diǎn),所以,所以.

因?yàn)?/span>,所以.

因?yàn)?/span>,,所以平面

)設(shè)菱形的邊長(zhǎng)為,由()可知,.

所以以為原點(diǎn),、所在直線分別為、軸,建立如圖空間坐標(biāo)系.

可得,,.

設(shè)平面的法向量為,所以,即.

,則.

平面的法向量為.

設(shè)二面角的大小為,則為銳角,;

)由,

因?yàn)?/span>平面,則,即,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)參加某個(gè)知識(shí)答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進(jìn)行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學(xué)各自從備選的5道不同題中隨機(jī)抽出3道題進(jìn)行答題,答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,已知甲能答對(duì)備選5道題中的每道題的概率都是,乙恰能答對(duì)備選5道題中的其中3道題;第一輪答題完畢后進(jìn)行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對(duì),繼續(xù)答下一題…,直到答錯(cuò),則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對(duì)繼續(xù)答第2題,如果第2題也答對(duì),繼續(xù)答第3題,直到他答錯(cuò)則換成乙坐莊開始答下一題,…直到乙答錯(cuò)再換成甲坐莊答題,依次類推兩人共計(jì)答完20道題游戲結(jié)束,假設(shè)由第一輪答題得分期望高的同學(xué)在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(xué)(最先答題的同學(xué))作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對(duì)其中每道題的概率都是,如果某位同學(xué)有機(jī)會(huì)答第道題且回答正確則該同學(xué)加10分,答錯(cuò)(不答視為答錯(cuò))則減5分,甲乙答題相互獨(dú)立;兩輪答題完畢總得分高者勝出.回答下列問(wèn)題

1)請(qǐng)預(yù)測(cè)第二輪最先開始作答的是誰(shuí)?并說(shuō)明理由

2)①求第二輪答題中,;

②求證為等比數(shù)列,并求)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長(zhǎng)交橢圓點(diǎn),且的周長(zhǎng)為.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過(guò)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為實(shí)數(shù),用表示不超過(guò)的最大整數(shù),例如,,,對(duì)于函數(shù),若存在,使得,則稱函數(shù)是“函數(shù)”.

1)判斷函數(shù),是否是“函數(shù)”;

2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;

3)若函數(shù)是“函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)為,離心率為,過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為1.

1)求橢圓的方程;

2)若直線交橢圓于點(diǎn),兩點(diǎn),與線段和橢圓短軸分別交于兩個(gè)不同點(diǎn),,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時(shí),求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)處有最大值,求的值;

2)當(dāng)時(shí),判斷的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別稱為藥,藥)的療效,某機(jī)構(gòu)隨機(jī)地選取 位患者服用藥,位患者服用藥,觀察這位患者的睡眠改善情況.這些患者服用一段時(shí)間后,根據(jù)患者的日平均增加睡眠時(shí)間(單位:),以整數(shù)部分當(dāng)莖,小數(shù)部分當(dāng)葉,繪制了如下莖葉圖:

1)根據(jù)莖葉圖判斷哪種藥對(duì)增加睡眠時(shí)間更有效?并說(shuō)明理由;

2)求這名患者日平均增加睡眠時(shí)間的中位數(shù),并將日平均增加睡眠時(shí)間超過(guò)和不超過(guò)的患者人數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

服用

服用

3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為兩種藥的療效有差異?

附: .

0.01

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.若將曲線為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),然后將所得圖象向右平移2個(gè)單位,再向上平移3個(gè)單位得到曲線C.直線l的極坐標(biāo)方程為.

1)求曲線C的普通方程;

2)設(shè)直線l與曲線C交于A,B兩點(diǎn),與x軸交于點(diǎn)P,線段AB的中點(diǎn)為M,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案