給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.

(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(。┊(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求直線的方程并證明;
(ⅱ)求證:線段的長(zhǎng)為定值.

(1),,(2)(。,(ⅱ)詳見解析.

解析試題分析:(1)求橢圓方程,利用待定系數(shù)法,列兩個(gè)獨(dú)立方程就可解出因?yàn)槎梯S上的一個(gè)端點(diǎn)到的距離為,所以所以再根據(jù)“準(zhǔn)圓”定義,寫出“準(zhǔn)圓”方程.(2)(。┲本與橢圓相切問(wèn)題,通常利用判別式為零求切線方程,利用點(diǎn)斜式設(shè)直線方程,與橢圓方程聯(lián)立消得關(guān)于的一元二次方程,由判別式為零得斜率,即證得兩直線垂直.(ⅱ)本題是(。┑囊话慊,首先對(duì)斜率是否存在進(jìn)行討論,探討得斜率不存在時(shí)有兩直線垂直,即將問(wèn)題轉(zhuǎn)化為研究直線是否垂直問(wèn)題,具體就是研究是否成立.研究思路和方法同(。,由于點(diǎn)坐標(biāo)在變化,所以由判別式為零得關(guān)于點(diǎn)坐標(biāo)的一個(gè)等式:,即,而這等式對(duì)兩條切線都適用,所以的斜率為方程兩根,因此.當(dāng)垂直時(shí),線段為準(zhǔn)圓的直徑,為定值4.
試題解析:解:(1),
橢圓方程為,                            2分
準(zhǔn)圓方程為.                             3分
(2)(ⅰ)因?yàn)闇?zhǔn)圓軸正半軸的交點(diǎn)為
設(shè)過(guò)點(diǎn)且與橢圓相切的直線為,
所以由.
因?yàn)橹本與橢圓相切,
所以,解得,       6分
所以方程為.                 7分
.                              8分
(ⅱ)①當(dāng)直線中有一條斜率不存在時(shí),不妨設(shè)直線斜率不存在,
,
當(dāng)時(shí),與準(zhǔn)圓交于點(diǎn),
此時(shí)(或),顯然直線垂直;
同理可證當(dāng)時(shí),直線垂直.             10分
②當(dāng)斜率存在時(shí),設(shè)點(diǎn),其中.
設(shè)經(jīng)過(guò)點(diǎn)與橢圓相切的直線為,
所以由

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)在拋物線上,直線,且)與拋物線,相交于、兩點(diǎn),直線、分別交直線于點(diǎn)、.
(1)求的值;
(2)若,求直線的方程;
(3)試判斷以線段為直徑的圓是否恒過(guò)兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓C:的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱.

(1)若點(diǎn)P的坐標(biāo),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)為(,0).
(1)求橢圓的方程;  
(2)若過(guò)原點(diǎn)作兩條互相垂直的射線,與橢圓交于,兩點(diǎn),求證:點(diǎn)到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓 ,若橢圓的右頂點(diǎn)為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:()的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓以雙曲線的實(shí)軸為短軸、虛軸為長(zhǎng)軸,且與拋物線交于兩點(diǎn).
(1)求橢圓的方程及線段的長(zhǎng);
(2)在圖像的公共區(qū)域內(nèi),是否存在一點(diǎn),使得的弦的弦相互垂直平分于點(diǎn)?若存在,求點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線,垂足為C,連結(jié)AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.

(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;
(3)對(duì)任意k>0,求證:PA⊥PB..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn),求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

同步練習(xí)冊(cè)答案