【題目】在如圖所示的四邊形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,記∠ABC=θ.
(Ⅰ)求用含θ的代數(shù)式表示DC;
(Ⅱ)求△BCD面積S的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣ ,若對任意的x1 , x2∈[1,2],且x1≠x2時,[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣e2 , e2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:參數(shù)方程與極坐標(biāo)系]
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 .
(Ⅰ)求曲線C2的直角坐標(biāo)系方程;
(Ⅱ)設(shè)M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),求|M1M2|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與圓O相切于點(diǎn)B,CD為圓O上兩點(diǎn),延長AD交圓O于點(diǎn)E,BF∥CD且交ED于點(diǎn)F
(Ⅰ)證明:△BCE∽△FDB;
(Ⅱ)若BE為圓O的直徑,∠EBF=∠CBD,BF=2,求ADED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行 統(tǒng)計(jì),樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā) 放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下 老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100 元.試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mex﹣lnx﹣1.
(1)當(dāng)m=1,x∈[1,+∞)時,求y=f(x)的值域;
(2)當(dāng)m≥1時,證明:f(x)>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com