【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.
【答案】
(1)
解:∵loga3>loga2,∴a>1,
又∵y=logax在[a,2a]上為增函數(shù),
∴l(xiāng)oga(2a)﹣logaa=1,∴a=2
(2)
解:依題意可知 解得 ,
∴所求不等式的解集為
(3)
解:∵g(x)=|log2x﹣1|,
∴g(x)≥0,當且僅當x=2時,g(x)=0,
則
∴函數(shù)在(0,2)上為減函數(shù),在(2,+∞)上為增函數(shù),
g(x)的減函數(shù)為(0,2),增區(qū)間為(2,+∞)
【解析】(1)根據(jù)對數(shù)函數(shù)的性質(zhì)求出a的范圍,根據(jù)函數(shù)的單調(diào)性得到loga(2a)﹣logaa=1,求出a的值即可;(2)根據(jù)函數(shù)的單調(diào)性得到關(guān)于x的不等式組,解出即可;(3)通過討論x的范圍,求出函數(shù)的單調(diào)區(qū)間即可.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|3≤3x≤27}, .
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x(單位:萬元)與銷售額y(單位:萬元)之間有如表對應數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
附:回歸直線的斜率和截距的最小二乘估計公式分別為: .
(2)試預測廣告費支出為10萬元時,銷售額多大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形中, , , , , 分別在上, ,現(xiàn)將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點,使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期為π. (Ⅰ)當x∈[0, ]時,求f(x)的最大值;
(Ⅱ)請用“五點作圖法”畫出f(x)在[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù) (為自然對數(shù)的底數(shù)),.
(1)證明:當時, 沒有零點;
(2)若當時, 恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com