【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎,若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,求X的分布列和數(shù)學期望.

【答案】
(1)解:記事件A1={從甲箱中摸出一個球是紅球},事件A2={從乙箱中摸出一個球是紅球},事件B1={顧客抽獎1次獲一等獎},事件B2={顧客抽獎1次獲二等獎},事件C={顧客抽獎1次能獲獎},由題意A1,A2相互獨立, , 互斥,B1,B2互斥,且B1=A1A2,B2= + ,C=B1+B2,因為P(A1)= ,P(A2)= ,所以,P(B1)=P(A1)P(A2)= = ,P(B2)=P( )+P( )= + = = ,故所求概率為:P(C)=P(B1+B2)=P(B1)+P(B2)=
(2)解:顧客抽獎1次可視為3次獨立重復試驗,由(1)可知,顧客抽獎1次獲一等獎的概率為: ,所以.X~B .于是,P(X=0)= = ,P(X=1)= = ,P(X=2)= = ,P(X=3)= =

故X的分布列為:

X

0

1

2

3

P

E(X)=3× =


【解析】(1)記事件A1={從甲箱中摸出一個球是紅球},事件A2={從乙箱中摸出一個球是紅球},事件B1={顧客抽獎1次獲一等獎},事件A2={顧客抽獎1次獲二等獎},事件C={顧客抽獎1次能獲獎},利用A1 , A2相互獨立, , 互斥,B1 , B2互斥,然后求出所求概率即可.(2)顧客抽獎1次可視為3次獨立重復試驗,判斷X~B .求出概率,得到X的分布列,然后求解期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:全集U=R,函數(shù) 的定義域為集合A,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下數(shù)表的構造思路源于我國南宋數(shù)學家楊輝所著的《詳解九章算術》一書中的“楊輝三角性”.

該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)為(
A.2017×22015
B.2017×22014
C.2016×22015
D.2016×22014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax1(x≥0)的圖象經(jīng)過點(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x﹣ax2+8,x∈[﹣2,1]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ (x∈R),區(qū)間M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,則b﹣a的值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于兩個定義域相同的函數(shù)f(x)、g(x),若存在實數(shù)m,n,使h(x)=mf(x)+ng(x),則稱函數(shù)f(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1)”生成一個函數(shù)h(x),使得h(x)滿足:
①是偶函數(shù),②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F.

(1)判斷BE是否平分∠ABC,并說明理由;
(2)若AE=6,BE=8,求EF的長.

查看答案和解析>>

同步練習冊答案