【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與的直角坐標(biāo)方程;
(2)當(dāng)與有兩個公共點時,求實數(shù)的取值范圍.
【答案】(1)曲線的直角坐標(biāo)方程為;(2).
【解析】試題分析:(1)第一問直接利用恒等消參法把曲線的參數(shù)方程化為直角坐標(biāo)方程,利用極直互化的公式把的極坐標(biāo)方程化為直角坐標(biāo);(2)第二問,畫出曲線曲線對應(yīng)的半圓弧,再畫出曲線對應(yīng)的直線,利用數(shù)形結(jié)合分析得到t的取值范圍.
試題解析:(1)∵曲線的參數(shù)方程為(為參數(shù), ),
∴曲線的普通方程為: (, ),
∵曲線的極坐標(biāo)方程為,
∴曲線的直角坐標(biāo)方程為.
(2)∵曲線的普通方程為: (, )為半圓弧,由曲線于有兩個公共點,則當(dāng)與相切時,得,整理得,
∴或(舍去),
當(dāng)過點時, ,所以t=-1.
∴當(dāng)與有兩個公共點時, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品集團(tuán)生產(chǎn)的火腿按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)依次為1,2,3,…,8,其中為標(biāo)準(zhǔn), 為標(biāo)準(zhǔn).已知甲車間執(zhí)行標(biāo)準(zhǔn),乙車間執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,且兩個車間的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).
(1)已知甲車間的等級系數(shù)的概率分布列如下表,若的數(shù)學(xué)期望E(X1)=6.4,求, 的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
(2)為了分析乙車間的等級系數(shù),從該車間生產(chǎn)的火腿中隨機(jī)抽取30根,相應(yīng)的等級系數(shù)組成一個樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用該樣本的頻率分布估計總體,將頻率視為概率,求等級系數(shù)的概率分布列和均值;
(3)從乙車間中隨機(jī)抽取5根火腿,利用(2)的結(jié)果推斷恰好有三根火腿能達(dá)到標(biāo)準(zhǔn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實數(shù),若不能,請說明理由;
(Ⅱ)求最大的整數(shù),使得對任意,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點是f(x)的零點.(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)
(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:b2>3a;
(3)若f(x),f'(x)這兩個函數(shù)的所有極值之和不小于-,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點.
(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;
(Ⅱ)把直線與軸的交點記為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關(guān)系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關(guān)系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會選擇去乙公司.
點睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個值時的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點.
(1)證明: ;
(2)設(shè)為線段上的動點,若線段長的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和“導(dǎo)學(xué)案”兩種教學(xué)方式,在甲、乙兩個平行班進(jìn)行教學(xué)實驗。為了解教學(xué)效果,期末考試后,分別從兩個班級各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,得到如下莖葉圖。記成績不低于70分者為“成績優(yōu)良”。
(Ⅰ)請大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;
(Ⅱ)構(gòu)造一個教學(xué)方式與成績優(yōu)良列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
(附:,其中是樣本容量)
獨立性檢驗臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, 分別是角的對邊,已知,現(xiàn)有以下判斷:
①不可能等于15; ②;
③作關(guān)于的對稱點的最大值是;
④若為定點,則動點的軌跡圍成的封閉圖形的面積是。請將所有正確的判斷序號填在橫線上______________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com