【題目】已知函數(shù) .
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(3)在(2)條件下,若對任意的正數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)增函數(shù)(2)(3)的取值范圍﹤
【解析】
(1)在定義域上任取兩個(gè)變量,且規(guī)定大小,再將對應(yīng)的函數(shù)值作差變形看符號,利用單調(diào)性的定義即可得到結(jié)論.
(2)由f(x)是R上的奇函數(shù)所以f(x)+f(﹣x)=0求得.
(3)先求得a,結(jié)合(1)(2)得﹥對任意的﹥0恒成立,利用二次函數(shù)圖像及性質(zhì)可得答案.
(1)函數(shù)為R上的增函數(shù),證明如下:
函數(shù)的定義域?yàn)镽,對任意,
設(shè)﹤,,
因?yàn)?/span>為R上的增函數(shù),且﹤,所以﹤0,﹤0, ﹤函數(shù)為R上的增函數(shù)。
(2)∵函數(shù)為奇函數(shù)
∴,∴
當(dāng)時(shí),
∴,
此時(shí),函數(shù)為奇函數(shù),滿足題意。
所以.
(3)因?yàn)楹瘮?shù)為奇函數(shù),從而不等式﹥0對任意的恒成立等價(jià)于不等式﹥對任意的恒成立。
又因?yàn)樵冢ā蓿?∞)上為增函數(shù),
所以等價(jià)于不等式﹥對任意的﹥0恒成立,
即2﹥0對任意的﹥0恒成立.
所以必須有﹥0且△﹤0;或,
所以實(shí)數(shù)的取值范圍﹤
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從某醫(yī)院中隨機(jī)抽取了7位醫(yī)護(hù)人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核:10分制),用相關(guān)的特征量表示;醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)(試卷考試:100分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
98 | 88 | 96 | 91 | 90 | 92 | 96 | |
9.9 | 8.6 | 9.5 | 9.0 | 9.1 | 9.2 | 9.8 |
(1)求關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01);
(2)利用(1)中的線性回歸方程,分析醫(yī)護(hù)專業(yè)考核分?jǐn)?shù)的變化對關(guān)愛患者考核分?jǐn)?shù)的影響,并估計(jì)某醫(yī)護(hù)人員的醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)為95分時(shí),他的關(guān)愛患者考核分?jǐn)?shù)(精確到0.1)
附:回歸直線方程中斜率和截距的最小二乘法估計(jì)公式分別為
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1)(x∈R).
(1)求f(x)的周期和單調(diào)遞減區(qū)間;
(2)在△ABC 中,角A、B、C的對邊分別為a,b,c,f(A)=﹣1,a= , =3,求邊長b和c的值(b>c).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學(xué)生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為等,小于80分者為等.
(1)求女生成績的中位數(shù)及男生成績的平均數(shù);
(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?
(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為2500元,已知每生產(chǎn)x件這樣的產(chǎn)品需要再增加可變成本C(x)=200x+x3(元),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤最大,該廠應(yīng)生產(chǎn)多少件這種產(chǎn)品?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學(xué)生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為等,小于80分者為等.
(1)求女生成績的中位數(shù)及男生成績的平均數(shù);
(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?
(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】log0.72,log0.70.8,0.9﹣2的大小順序是( )
A.log0.72<log0.70.8<0.9﹣2
B.log0.70.8<log0.72<0.9﹣2
C.0.9﹣2<log0.72<log0.70.8
D.log0.72<0.9﹣2<log0.70.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25. (Ⅰ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(Ⅱ)直線l的參數(shù)方程是 (t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|= ,求l的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com